Articles: Cooling
 

Bookmark and Share

(1) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 ]

Testbed Configuration and Testing Methodology

We tested all coolers inside a closed system case with the following configuration:

For the primary tests and summary diagrams we overclocked our six-core processor with the clock generator frequency set at 125 MHz, the multiplier at 35x and “Load-Line Calibration” enabled to 4.375 GHz. The nominal processor Vcore was increased to 1.385 V in the mainboard BIOS. After that we tested the new coolers at even higher frequency and voltage settings. Turbo Boost was disabled during this test session, and Hyper-Threading technology was enabled to increase the heat dissipation. The memory voltage was at 1.65 V and its frequency was 2000 MHz with 9-10-10-28 timings. All other parameters available in the mainboard BIOS and related to CPU or memory overclocking remained unchanged.

All tests were performed under Windows 7 Ultimate x64 SP1 operating system. We used the following software during our test session:

  • LinX AVX Edition version 0.6.4 – to load the processor (memory - 4500 MB, Problem Size – 24234, two 11-minute cycles);
  • Real Temp GT version 3.70 – to monitor the processor core temperatures;
  • Intel Extreme Tuning Utility version 3.1.201.5 – for monitoring and visual control of all system parameters during overclocking.

So, the complete screenshot during the test session looks as follows:

The CPU was loaded with two consecutive LinX AVX test runs with the settings as indicated above. The stabilization period for the CPU temperature between the two test cycles was about 8-10 minutes. We took the maximum temperature of the hottest CPU core for the results charts. Moreover, we will also provide a table with the temperature readings for all cores including their average values. The ambient temperature was checked next to the system case with an electronic thermometer with 0.1 °C precision that allows hourly monitoring of the temperature changes over the past 6 hours. The room temperature during our test session varied between 21.2-21.7°C.

The noise level of each cooler was measured between 1:00 and 3:00 AM in a closed room about 20 m2 big using CENTER-321 electronic noise meter. The noise level for each cooler was tested outside the system case when the only noise sources in the lab were the cooler and its fan. The noise meter was installed on a tripod and was always at a 150 mm distance from the cooler fan rotor. The tested cooling systems were placed at the edge of the desk on a sheet of polyurethane foam. The lowest noise reading our noise meter device can register is 29.8 dBA and the subjectively comfortable noise level in these testing conditions was around 36 dBA (do not mix it up with low noise level). The fan(s) rotation speed was adjusted in the entire supported range using our in-house controller by changing the voltage with 0.5 V increment.

We are going to compare Cooler Master and Deepcool products reviewed today against our traditional leader in the sub-$45 segment - Thermalright TRUE Spirit 140 with one default TY-140 fan and two fans like that:

  

Cooler Master Hyper PWM 412 and Deepcool GAMMAXX 400 were also tested with two alternative fans – Thermalright TR-FDB-2000, which rotation speed was adjusted in the interval between 800 and 2000 RPM with 400 RPM increments. I would also like to add that the rotation speed of all fans was controlled using the same special controller I mentioned above with ±10 RPM precision.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 ]

Discussion

Comments currently: 1
Discussion started: 03/20/13 01:26:19 PM
Latest comment: 03/20/13 01:26:19 PM

View comments

Add your Comment