Articles: CPU

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

New Integrated Graphics Cores for Desktop PCs

AMD Richland

The graphics core AMD implements in its Richland-based APUs doesn’t really need a detailed description. Although it is formally referred to as Radeon HD 8000D series, there is nothing fundamentally new about it. The modern GCN architecture which has long been used in AMD’s discrete graphics cards is only available in APUs based on the Jaguar design. The faster Richland series APUs can’t actually boast any improvements in the graphics department. In fact, the Richland is analogous to the Trinity design in its internal structure, incorporating x86 cores with Piledriver microarchitecture and a Devastator graphics core with VLIW4 architecture.

Talking about the graphics core integrated into the Richland design, it has the same structure of subunits as originally implemented in Radeon HD 6900 series graphics cards and even has the same number of those subunits. In other words, the Radeon HD 8000D cores available in the Richland are identical to the Radeon HD 7000D cores available in the Trinity. There are only differences in clock rates, yet even they are not larger than 11%. The higher model numbers of the newer graphics cores are just a marketing trick. And not a fair one at that.

Thus, the graphics performance of the new Socket FM2 processors is hardly going to differ from what we’ve come to expect from the A10, A8 and A6 5000 series APUs. Well, the Trinity could not be blamed for low 3D performance, so AMD’s decision to postpone any breakthroughs in this field is understandable. There is not much time left before the release of the new APU generation codenamed Kaveri, so AMD cannot lose its leading position in terms of integrated graphics performance, especially as Intel CPUs with Iris and Iris Pro graphics cores, which might show some real competition against the Richland's graphics core, are not widely available on the desktop CPU market and cost much more than the Richland on the mobile market.

Meanwhile, the total lack of any architectural innovations in the Richland design is not good news for people who consider installing AMD APUs in multimedia platforms or HTPCs. Inherited from the Trinity design, the AMD HD Media Accelerator engine offers hardware decoding support for popular formats (UVD3) and hardware encoding into H264 format (VCE), yet its performance and functionality are below the mark by today’s standards. That’s why Richland APUs may be inferior at HD video transcoding to their opponents which feature Intel's Quick Sync technology. Moreover, they do not offer any hardware acceleration for decoding video content in 4K format which is getting more and more popular these days.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]


Comments currently: 45
Discussion started: 09/15/13 10:28:42 PM
Latest comment: 01/04/17 10:03:03 AM

View comments

Add your Comment