Articles: CPU
 

Bookmark and Share

(26) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

3D Performance

As a tentative test of the 3D performance of the graphics cores integrated into the Trinity and Ivy Bridge processors, we will run Futuremark 3DMark. Its Cloud Gate test is designed to benchmark DirectX 10 performance of typical home PCs whereas the most resource-consuming Fire Strike is targeted at gaming DirectX 11-compatible configurations.

We’ve got very interesting results in Cloud Gate. Although the Core i3-3240 with HD Graphics 2500 couldn’t pass the test, the other two versions of Intel’s integrated graphics deliver outstanding performance. The Intel HD Graphics 4000 is faster than AMD’s graphics core with 192 shader processors whereas the newer HD Graphics 4600 beats every opponent, including the AMD A10 series. Well, we shouldn’t be misled into thinking that the HD Graphics 4600 is superior to the other integrated graphics solutions. The Cloud Gate test is sensitive not only to the GPU but also to the CPU performance, therefore the Core i5-4430 might have won because of its four highly efficient x86 cores. The results of the Fire Strike test may clear up the picture.

Indeed, Intel’s integrated graphics cores are not so brilliant now. The HD Graphics 4600 is almost 50% faster than the senior graphics core from the Ivy Bridge CPU series, yet that’s not enough for the Haswell to beat the flagship Richland-based APUs in the Fire Strike test. The gap between different generations of AMD APUs is only 5 to 8%, yet the HD Graphics 4600 is inferior to the Radeon HD 8570D and Radeon HD 7560D cores implemented in the AMD A8 series.

Anyway, 3DMark is a synthetic benchmark, so it wouldn't be quite correct to form any general conclusions on its basis. Let’s first check out the integrated graphics cores in actual 3D games. There are two test modes: 1) Full-HD resolution (1920x1080) with low or medium visual quality settings and 2) 1366x768 pixels with medium or high visual quality settings. We do not enable full-screen antialiasing.

Battlefield 3 is one of the most popular online shooters. It is not a new title, yet it is still a rather heavy application that’s suitable for benchmarking flagship graphics cards. When running on integrated graphics cores at the Full-HD resolution, the game cannot be expected to have a playable frame rate even if you lower its visual quality settings to their minimums. You can only get something like an average 24 fps with slowdowns to 20 fps. This performance is ensured by AMD’s top-end A10 series APUs whereas the other hybrid processors are downright slow at that resolution. To be specific, the A8 series is about 15% slower than the A10 whereas the A6 series is 33% slower than the top-end Richland-based APUs. Intel’s HD Graphics 4600 is in between the Radeon HD 8570D and the Radeon HD 8470D, lagging some 25% behind the Radeon HD 8670D graphics core implemented in the senior model of the A10 series.

BioShock Infinite runs on Unreal Engine 3, a highly popular and widely used game engine. Judging by the results, the engine doesn't work well with Intel's integrated graphics cores. BioShock Infinite is one of the few games where the HD Graphics 4600 turns out to be slower than the junior version of AMD’s integrated graphics solution, the Radeon HD 8470D with only 192 shader processors. As for the most advanced Radeon HD 8670D from the A10-6800K APU, it is quite capable of ensuring a playable frame rate at the Full-HD resolution with low visual quality settings. Interestingly, the Radeon HD 8670D delivers about the same performance as you can get from the $90 discrete graphics card Radeon HD 7750.

The game developer Crytek is known to create games that can get even top-end graphics cards down to their knees. Crysis 3 carries this tradition on, so this shooter runs very slow on the integrated graphics cores. Even at the resolution of 1366x768 pixels the graphics cores of the Haswell and Richland processors cannot deliver a playable frame rate, so there's no talking about Full-HD. We can also note that Crysis 3 is a game where Intel’s CPU-integrated graphics is worse than any Socket FM2 APU whereas the integrated graphics core of the flagship Richland-based A10-6800K APU is capable of competing with the discrete card Radeon HD 7750.

Developed by Codemasters, GRID 2 is a racing simulator which employs the EGO 3.0 technology we can also find in the DiRT and F1 game series. Such games do not have high system requirements, so you can enjoy GRID 2 on an integrated graphics core even with rather high visual quality settings. Although the game’s start screen shows you an Intel HD Graphics ad, you are going to enjoy your driving more on AMD's solutions. The hybrid APUs of the AMD A10 and A8 series are superior to the Core i5-4430 with its HD Graphics 4600 which is only ahead of the Radeon HD 8470D core from the A6-6400K processor. On the other hand, Intel should be given credit for making progress in this field: the HD Graphics 4600 is faster than the 18-month-old HD Graphics 4000 by an impressive 40%. AMD, on its part, has only made its integrated graphics solution faster by 7% over the same period.

Metro: Last Light is a newest first-person shooter that is one of the most resource-consuming games in terms of hardware requirements. So it is no wonder that, like Crysis 3, it runs too slow on the integrated graphics cards if you choose the Full-HD resolution. $100 discrete graphics cards are no better in this case, though. As for the relative performance of the Haswell and Richland processors, we don't have any surprises here. The HD Graphics 4600 is in between the Radeon HD 8470D and Radeon HD 8570D. In other words, Intel's graphics core with 20 execution devices is faster than the Devastator with 192 shader processors but slower than the same Devastator with 256 shader processors.

The latest third-person action game in the Tomb Raider series offers the gamer a highly realistic and visually rich world. Despite this, it can run fast enough with minimum settings on integrated graphics cores. The frame rate is high enough even at the Full-HD resolution. Besides the Richland-based APUs, the Haswell series is also good for this game. The Haswell is 50% faster than the most advanced graphics core of the Ivy Bridge series. As a result, the HD Graphics 4600 is good enough to compete with the AMD A8 APUs. AMD’s flagship A10-6800K processor can beat the discrete card Radeon HD 7750 at the resolution of 1920x1080 pixels with low visual quality settings (which do not put high load on the graphics memory).

War Thunder is a 3D MMO game about WW2 and postwar aircraft. This highly promising project is being developed by Gaijin, a well-known creator of flight simulators. Like other online projects of this kind, War Thunder doesn’t have high hardware requirements, yet you can hardly have any complaints about its visuals. Such MMO projects are generally able to run at acceptable speed on today’s integrated graphics solutions. War Thunder is no exception as you can get a high frame rate at the Full-HD resolution even with medium visual quality settings. AMD’s A10 and A8 make the game playable with some comfort. The results of the AMD A6 and Haswell processors are acceptable, too.

Summing up our 3D performance tests, we can note that the graphics cores of the new AMD Richland APUs bring about but minor improvements over the Trinity series in gaming applications, proportional to the increase in their clock rates. The speed improvements vary from 2 to 9%, but that’s enough to make AMD’s A10 and A8 APUs unrivalled in 3D gaming performance among all desktop hybrid processors.

Intel has definitely made a big step forward with the new Haswell microarchitecture in terms of the integrated graphics, but Intel’s desktop CPUs do not have the most advanced version of the integrated graphics core. The HD Graphics 4600 core available in all of Intel’s desktop CPUs is about 50% faster than the HD Graphics 4000, yet the Core i5 and Core i3 4000 series CPUs are only comparable to the AMD A6 series with Radeon HD 8470D.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

Discussion

Comments currently: 26
Discussion started: 09/15/13 10:28:42 PM
Latest comment: 12/06/13 10:30:12 AM

View comments

Add your Comment