Articles: CPU

Bookmark and Share


Table of Contents

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]

Every review about Intel’s new CPUs is supposed to begin with the tick-tock rule and how it applies to them. One may even get a notion that Intel is indeed following this empirical law for some mysterious reason. But the fact is that the development and introduction of new CPU microarchitectures and manufacturing technologies comply with other rules. The rules and laws of business. So, the tick-tock model is just a suitable illustration of technical progress which seems to reflect the reality more or less accurately.

Well, it doesn’t anymore. The release of the Ivy Bridge series is supposed to be a “tick”, just a transition of the older Sandy Bridge microarchitecture to new 22nm tech process, but the new CPUs actually sport a lot of other changes. Intel refers to the Ivy Bridge as a “tick+” phase but the new series could be a “tock” just as well.

Any action taken by a CPU maker is supposed to have two ultimate goals: promote its products and reduce their manufacturing cost. Basing on this fact, rather than on some abstract rules, we can easily understand the purpose of the Ivy Bridge series.

Being the leader of the CPU market, Intel’s sales volumes are many times those of its closest competitors. So, the only way for Intel to keep on expanding is to reach into new markets. Currently, the most perspective products are the slim and light mobile computers of the tablet PC and ultrabook classes, and it’s in this direction that Intel has been refocusing. The Ivy Bridge series is supposed to hit right at this mobile computer market and compete with other popular platforms such as the ARM architecture and AMD’s hybrid x86 CPUs of the Zacate, Llano and Trinity series. Intel’s new CPUs can only be successful in this competition if they add a high-performance integrated graphics core and low heat dissipation to their traditionally high computing performance. And while the energy efficiency problem can be solved by introducing new manufacturing technologies, it takes some more effort to improve the graphics which has never been a strong point of Intel’s CPUs. This explains why Intel had to introduce significant changes into the Ivy Bridge microarchitecture and break the tick-tock rule.

Although optimized for ultra-mobile solutions, the Ivy Bridge is declared to be versatile and such CPUs are going to be used not only in mobile but also in desktop and even server computers. There’s nothing wrong about that since their computing part hasn’t changed much since the Sandy Bridge while the new tech process can help achieve higher clock rates and related performance benefits.

In this review we are going to take a look at the Ivy Bridge microarchitecture and CPUs from a standpoint of desktop users. Although the higher performance and wider functionality of the integrated graphics can hardly matter for the larger part of this consumer category, the Ivy Bridge can be interesting for them anyway. The new 22nm tech process may increase the CPU’s performance per watt and improve its frequency potential. That’s already enough for the Ivy Bridge to be more attractive than the Sandy Bridge series in the eyes of demanding enthusiasts.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]


Comments currently: 60
Discussion started: 04/23/12 09:59:12 AM
Latest comment: 04/10/14 07:17:44 AM

View comments

Add your Comment