Articles: CPU

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

Intel HD Graphics 4600 Performance

The desktop Haswell doesn’t offer any breakthroughs in terms of conventional computing. Its developer didn’t actually promise anything like that, focusing instead on creating energy-efficient modifications of the Core microarchitecture and perfecting 3D graphics performance. And while the Haswell CPUs with a TDP of only a few watts can hardly excite desktop PC users, the improvements in the graphics department are considerable. AMD has managed to build a market for desktop APUs and Intel’s solutions with better computing and comparable graphics performance would surely find their customer.

Well, it looks like Intel doesn’t really bother about the integrated graphics capabilities of its desktop CPUs. At least they do not have the fastest version of that core. Even the top-of-the-line Core i7-4770K is only endowed with the midrange GT2 version which is officially referred to as Intel HD Graphics 4600.

Anyway, even this graphics core is going to deliver improved performance in comparison with the HD Graphics 4000 we could see in top-end Ivy Bridge CPUs. First of all, the number of execution devices is increased from 16 to 20. The performance of most of fixed-function pixel processing units is doubled whereas the texture samplers are four times as fast as before.

The clock rate has been increased as well. The HD Graphics 4000 worked at 1.15 GHz in the Core i7-3770K while the new HD Graphics 4600 is clocked at 1.25 GHz in the Core i7-4770K. All of this implies considerable performance benefits which can be estimated with 3DMark 11 and the newest 3DMark Cloud Gate benchmark. By the way, the HD Graphics 4600 has no problems running modern games and benchmarks as it supports all modern APIs: DirectX 11.1, OpenGL 4.0 and OpenCL 1.2.

Although the number of execution devices has been increased in the HD Graphics 4600 by only a fourth in comparison with its predecessor HD Graphics 4000, they differ in speed much more. The Haswell’s graphics core is almost twice as fast as the previous version in 3DMark 11 whereas 3DMark Fire Strike thinks that the Core i7-4770K’s graphics is almost 40% better than its predecessor. In either case it is enough to make the desktop Haswell comparable to the top-end AMD Trinity APU in 3D performance.

Fortunately for AMD, Intel doesn’t have plans for an aggressive promotion of the faster graphics core GT3 in the desktop environment. The only series of Intel desktop CPUs to feature better graphics capabilities is the BGA-packaged R series. So, there is no reason for AMD to worry about its share of the APU market yet, even though Intel has been progressing rapidly in this field.

The results of the synthetic tests from Futuremark should be complemented with what the integrated graphics cores can do in actual games. There were two test modes: Full-HD resolution (1920x1080) with low visual quality settings and 1366x768 resolution with medium visual quality settings.

The gap between the HD Graphics 4600 and the HD Graphics 4000 isn’t as large as in the synthetic benchmarks. On average, the Core i7-4770K is 25 to 30% ahead of the top-end Ivy Bridge, which is not enough to let the user play latest games in Full-HD resolution even with low visual quality settings. In other words, the HD Graphics 4600 can hardly be viewed as an entry-level gaming solution. The fastest graphics core GT3 must be capable of that, therefore Intel refers to it not only by its number (5100) but also by its pretty marketing name of Iris.

Besides the 3D functionality, Intel’s graphics cores incorporate a dedicated multimedia engine known as Quick Sync technology. In the Haswell it supports new formats (SVC and Motion JPEG), new image enhancement techniques (such as hardware image stabilization and frame rate conversion), decoding of video with resolution up to 4096x2304 pixels, etc. It is promised to be faster at transcoding, and we can easily check this out.

We use CyberLink Media Espresso 6.7 utility for that purpose as it is optimized for Intel Quick Sync as well as for other transcoding capabilities of modern CPUs and GPUs. Although Intel has published its SDK for accessing the hardware coder/decoder of Core CPUs, developers of free software do not hurry to implement Quick Sync support in their solutions, so we have to use the paid utility from CyberLink.

For transcoding tests we used a 40-minute 1080p video in H.264 format with about 10 Mbit/s bitrate and in lower resolution to be viewed on iPhone 4S. The goal video format was H.264, resolution – 1280x720 with about 6 Mbit/s bitrate.

The Haswell’s upgraded media engine is about 40% faster. The quality of transcoding has improved as well, which can be easily noticed even if you convert videos for mobile gadgets. The screenshots below show you videos compressed with the Ivy Bridge’s and Haswell’s media engines using the same settings (6 Mbps bitrate for iPhone 4S).

Intel Core i7-3770K
HD Graphics 4000

Intel Core i7-4770K
HD Graphics 4600

It is easy to see that the Haswell’s Intel Quick Sync ensures a better level of detail on small objects and more natural colors.

Haswell graphics core copes great with hardware acceleration of video playback in 4K resolution. As an example we decided to check how high will the CPU utilization rise in a Core i7-4770K based system used to view a specially prepared video in H.264/AVC format in 3840x2160 resolution with 103 Mbit/s bitrate.

Intel HD graphics 4600 graphics core didn’t experience any problems. There were no dropped frames and the CPU utilization didn’t exceed 10%. Moreover, the processor computational cores even remain in one of their power-saving modes: their frequency being really far from the nominal 3.5 GHz. In other words, Haswell is fully prepped for work with 4K video.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]


Comments currently: 66
Discussion started: 06/01/13 12:36:47 PM
Latest comment: 11/29/16 07:57:53 AM

View comments

Add your Comment