Articles: CPU
 

Bookmark and Share

(41) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

New Platform

Introduced to back up the fourth-generation Core CPUs, the new desktop platform Lynx Point brings about more important innovations. It has become a rule for Intel to roll out a new generation of chipsets along with each new CPU microarchitecture. Some chipsets, such as the Z68 and Z77, are backwards compatible with previous CPU generations, and others are not, but in general Intel tries to upgrade the platform and entire infrastructure together with the release of each fundamentally new microarchitecture (the “tock” cycle), and that’s what we see here.

Desktop Haswell CPUs are designed in LGA1150 packaging which requires a mainboard with a corresponding CPU socket. Such mainboards may be based on Intel’s new 8 generation chipsets.

This chipset family traditionally includes several modifications targeted for different market segments, but the Z87 is the ultimate version in terms of features and functionality. It offers the full selection of controllers and interfaces, can divide PCIe 3.0 lanes for multi-GPU configurations and doesn’t prevent you from overclocking the CPU. We’ll use the Z87 to learn what the new platform can do.

The differences between the Z87 and Z77 seem to be petty at first sight, both even using the same DMI 2.0 bus with PCI Express protocol to connect to the CPU. In fact, Intel has only improved the chipset’s connectivity capabilities, so the Z87 supports six rather than four USB 3.0 ports and all of its six SATA ports are 6 Gbit/s.

By the way, take note that Thunderbolt is not mentioned on the Z87 flowchart anymore. It doesn’t mean that Thunderbolt controllers are incompatible with the LGA1150 platform. We will surely see Thunderbolt-enabled LGA1150 mainboards in the near future, but Intel seems to have lost its interest in this technology which hasn’t gained much recognition in the last two years.

At first glance, replacing the socket with a new LGA 1150 may seem to be a little artificial measure. However, this is not entirely so. As a matter of fact, the LGA1150 platform has some more substantial differences justifying this change, but they are not so conspicuous.

Intel has changed the way that monitors are connected to the CPU-integrated graphics core. The CPU itself is now responsible for digital interfaces (DisplayPort, HDMI and DVI), the chipset only supporting analog VGA connections. This solution lowers the load on the graphics FDI link between the CPU and the chipset so that the Lynx Point platform can support up to three digital monitors with 4K resolutions concurrently.

Well, this is still not the main point of the whole affair with the new CPU socket and the new generation of mainboards. The most important thing is that the platform design has been revised to once again increase the overall level of CPU integration. Core series CPUs have assimilated all North Bridge components of chipsets quite a long time ago, and the Haswell gets down to absorbing the voltage regulator, which is one of the key mainboard components.

CPUs of the previous generation required six different voltages to be supplied by the mainboard for their various subunits: x86 cores, cache memory, system agent and graphics core. The Haswell takes on that responsibility, requiring only two voltages from the mainboard: the basic input voltage of 1.8 volts and the memory voltage. Other voltage conversions and voltage regulation inside the CPU are now performed without the mainboard’s intervention.

This integration makes the CPU more flexible in terms of dynamic power supply and energy saving and also simplifies the design of LGA1150 mainboards. It’s a win-win scenario. Mainboard makers can make their products simpler. CPUs can use power in a more optimal way. And users will have a unified, reliable, stable and accurate system of voltage regulation which doesn’t vary between specific implementations. Intel promises the integrated regulator to be very precise, allowing for voltage fluctuations no larger than a few millivolts. Users will have full access to the CPU-integrated voltage regulator’s parameters, just as before.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

Discussion

Comments currently: 41
Discussion started: 06/01/13 12:36:47 PM
Latest comment: 04/03/14 02:58:28 AM

View comments

Add your Comment