Articles: Graphics
 

Bookmark and Share

(12) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

Conclusion

The tempo Intel has set for the development of their integrated graphics core is truly impressive. It may seem that we have just recently admired the ability of the Sandy Bridge graphics to compete against entry-level graphics cards, but the new generation of processor design called Ivy Bridge again pushed the performance bar another step forward. This progress is particularly impressive considering that Ivy Bridge microarchitecture is not positioned as a new development, but merely as a transition of the old design to more advanced technological level with only a few minor improvements. Nevertheless, the launch of Ivy Bridge brought with it a new version of integrated HD Graphics cores with not only higher performance, but also DirectX 11 support, enhanced Quick Sync technology and ability to process general-purpose calculations.

However, in reality there are two versions of the graphics core and they are seriously different from one another. The top modification, HD Graphics 4000, is exactly the product that will trigger your fascination. Its 3D performance compared with HD Graphics 3000 increased by about 70%, which positions it somewhere between contemporary discrete graphics accelerators such as Radeon HD 6450 and Radeon HD 6570. Of course, it is not a record for integrated graphics and solutions integrated into top AMD Llano processors work somewhat faster, but at least Intel managed to defeat Radeon HD 6530D from the AMD A6 series processors. And with 75% faster Quick Sync technology Intel HD Graphics 4000 doesn’t have any alternatives and may become a desired option for mobile systems as well as for desktops (not the gaming kind though).

The second modification – Intel HD Graphics 25000 – is significantly weaker. Although it also supports DirectX 11, it is more of a formal improvement. It is almost always slower than HD Graphics 3000 and therefore can’t compete against any discrete graphics accelerators. In other words, HD Graphics 2500 seems to be a solution which 3D functionality is merely a formality, but not really a serious feature. Namely, HD Graphics 2500 is a good choice for media players and HTPC, because its video transcoding and decoding functions remained untouched, but hardly an entry level 3D accelerator. Although many of the previous-generation games may probably run acceptably on HD Graphics 2500.

Judging by the way Intel distributed their new HD Graphics 4000/2500 cores among the processors, the company’s opinion about them and their potential is very similar to ours. The top 4000 model is targeted primarily for notebooks where there is high demand for integrated and high-performance solutions but discrete graphics threatens the mobility of the platform and therefore is not a preferred choice. As for the desktop segment, HD Graphics 4000 may be a part of rare custom products or as part of expensive CPUs, which cannot come with anything of limited functionality by definition. That is why most desktop Ivy Bridge processors are equipped with HD Graphics 2500 core, which doesn’t affect the discrete graphics card market.

Nevertheless, Intel indicates clearly that integrated graphics solutions are one of their current priorities. And while processors with integrated graphics can now only affect the mobile products, they have the potential to become an alternative to discrete desktop graphics accelerators at some point. Time will show what will happen.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

Discussion

Comments currently: 12
Discussion started: 06/26/12 10:09:24 AM
Latest comment: 05/05/13 02:15:22 PM

View comments

Add your Comment




Latest materials in Graphics section

Article Rating

Article Rating: 9.5181 out of 10
 
Rate this article:
Excellent
Average
Poor