Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]

Gigabyte GA-990FXA-UD7

The box with Gigabyte GA-990FXA-UD7 is larger than the regular mainboard boxes in all respects, because of the peculiar internal structure of the packaging they used. We see the exterior box made of thin cardboard that performs decorative and informational functions. It covers another box of thick black cardboard, which the board and included accessories packed carefully in individual boxes inside it. The front flip-cover is attached with Velcro, and once open allows you to see the mainboard inside through a transparent plastic window. Almost all of the space behind the flip-cover and on the back of the box is used for numerous logotypes and diagrams illustrating the major peculiarities of Gigabyte GA-990FXA-UD7.

The bundled accessories are not too numerous and mostly consists of the diverse bridges for multi-card graphics configurations:

  • Four SATA cables with metal connector locks, two with L-shaped locks and another two with straight ones;
  • Two flexible bridges for two-way AMD CrossFire graphics configurations;
  • A flexible bridge for two-way Nvidia SLI graphics configurations;
  • A hard bridge for 3-way Nvidia SLI graphics configurations;
  •  A hard bridge for 4-way Nvidia SLI graphics configurations;
  • I/O Shield for the back panel;
  • User manual;
  • Brief installation guide in several different languages;
  • DVD disk with software and drivers;
  • “Dolby Home Theater” and “Gigabyte” logo stickers for the system case.

The second reason why this particular mainboard packaging is so large is because the Gigabyte GA-990FXA-UD7 mainboard itself is larger than usual and measures 305x263 mm. It is 19 mm wider than the ATX standard and therefore is considered an E-ATX form-factor.

The processor voltage regulator circuitry is built as 8+2 phases. It uses quality highly-integrated components, where two MOSFETs and a control unit are combined into what is known as a single Driver MOSFET chip. All heating components of this circuitry are covered with an additional heatsink and all three heatsinks are secured screwed on to the PCB and are connected together with a heatpipe. Judging by the large number of graphics card bridges included with the mainboard, we can conclude that the board uses the functionality of AMD 990FX chipset to the full extent allowing to use up to four graphics accelerators at the same time. Unfortunately, the system gets so cramped that it may be difficult to remove the card installed into the very top slot, because the connector locks on all the slots are of the traditional regular kind.

Among the mainboard’s additional features we should point out the use of two BIOS chips, a POST-code indicator, glowing Clear CMOS, Power On and Reset buttons. IT was very thoughtful to provide a protective plastic cap on top of the Clear CMOS button, which should prevent accidental presses, however, I think it would make more sense to have it in the back panel. They use very convenience color-coding for the front panel ports and connectors, the marking is made not only on the textolite next to the actual connector, but also inside the connector itself.  There are only four fan connectors onboard, and only two of them are four-pin ones and allow adjusting the rotation speed of the fans connected to them. One of them is for the processor fan, and another one is located in the lower right corner of the mainboard. I don’t think it is the best implementation, because of higher heat dissipation it is the area on the opposite side of the mainboard, around the processor voltage regulator, that requires additional cooling and therefore could use a four-pin fan connector. Besides six SATA 6 Gbps ports provided by AMD SB950 South Bridge, two more SATA 6 Gbps ports are implemented via Marvell 88SE9172 controller. A second controller like that is used for Power eSATA and eSATA/USB Combo ports on the back panel.

Just like on all other Gigabyte mainboards, the back panel on GA-990FXA-UD7 is very busy and has practically no free room left:

  • PS/2 connector for keyboard or mouse;
  • Eight USB 2.0 ports (including eSATA/USB Combo), four more are laid out as two onboard pin-connectors;
  • Optical and coaxial S/PDIF and six analogue audio-jacks provided by eight-channel Realtek ALC889 codec;
  • IEEE1394 (FireWire) port implemented via VIA VT6308P controller, the second port is available as onboard pin-connector;
  • 6 Gbps Power eSATA (blue connector) and eSATA/USB Combo ports implemented vis Marvell 88SE9172 controller;
  • Two USB 3.0 ports (blue connectors) implemented via EtronTech EJ168 controller, second controller like that provided an additional internal pin-connector for two more USB 3.0 ports;
  • A local network port (network adapter is built around Gigabit Realtek RTL8111E network controller).

Unfortunately, just like on the previously discussed Asus board, we had to reflash the BIOS first using the old AM3 processor. The new processors are supported starting with the BIOS version F4 from August 28, 2011. Upon system start you will see the memory frequency, while the CPU frequency will remain secret.

Like all contemporary mainboards, Gigabyte GA-990FXA-UD7 uses Award microcode based BIOS.

One serious drawback of this mainboard is its persistent disagreement with any changes in its settings. And it does it in a very simple way: doesn’t let you access the BIOS Setup. It doesn’t matter where the USB keyboard is plugged in, how frequently you press the “Del” key or for how long you hold it. The board will either let you into the BIOS or not. It is extremely frustrating, when three-four times in a row you have to load Windows and then reboot again trying to get into the BIOS Setup. I have recently got rid of the PS/2 keyboard, believing I won’t ever need it again. Of course, you can use Touch BIOS utility for Windows to adjust some settings, but it doesn’t have everything the BIOS has.

If you are lucky and you manage to get into the BIOS Setup, you will be happy to see “MB Intelligent Tweaker (M.I.T.)” to the first section on the menu. It contains many parameters necessary for successful overclocking and fine-tuning of your system.

Among the familiar parameters there is a mysterious “Turbo CPB”, which should increase processor performance. We have already seen it on other Gigabyte mainboards for Socket AM3 processors, but we didn’t notice any performance increase from enabling it. The same thing happened this time, too. By default the mainboard sets not the best memory timings: 7-7-7-720-2T. The board was unable to make the memory work at 1866 MHz, but everything worked perfectly fine at 1600 MHz with 6-6-6-18-1T timings. However, there is one more mysterious parameter in the “MB Intelligent Tweaker (M.I.T.)” section besides the above mentioned “Turbo CPB”. It is called “DRAM E.O.C.P.” (DRAM Easy Over Clock Profile). It allows using the X.M.P. profile if there is one on the memory modules’ SPD, or setting the optimal timings for 1600-2400 MHz memory frequencies automatically. In fact, the mainboard officially supports 1866 MHz maximum memory speed, and higher frequencies are only attainable during overclocking when we increase the base clock. BY the way, you can easily set 2133 MHz memory frequency on the Asus mainboard. Unfortunately, even enabled “DRAM E.O.C.P.” didn’t help he mainboard get the system memory to work at 1866 MHz. moreover, the memory refused to work even at 1600 MHz frequency, although it worked at this speed perfectly fine with enabled “DRAM E.O.C.P.”.

Some settings related to processor technologies didn’t get included into the “MB Intelligent Tweaker (M.I.T.)” section and remained in the section called “Advanced BIOS Features”.

Unfortunately, we couldn’t locate the “HPC Mode” parameter or anything similar, which could help us prevent the CPU frequency from dropping to 3.3 GHz under load. As a result, it was impossible to overclock our processor on Gigabyte GA-990FXA-UD7 mainboard at all. It didn’t matter what processor frequency we chose, as it would anyway drop below the nominal under heavy load.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]


Comments currently: 9
Discussion started: 11/05/11 05:40:12 AM
Latest comment: 03/08/16 03:55:02 AM

View comments

Add your Comment