Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ]

Performance Comparison

As usual, we are going to compare the mainboards speeds in two different modes: in nominal mode and during CPU and memory overclocking. The first mode is interesting because it shows how well the mainboards work with their default settings. It is a known fact that most users do not fine-tune their systems, they simply choose the optimal BIOS settings and do nothing else. That is why we run a round of tests almost without interfering in any way with the default mainboard settings. Only for Gigabyte GA-Z77M-D3H mainboard we had to adjust the frequency of the Intel HD Graphics 4000 core integrated into the processor to make sure that it matches the nominal. The results in the diagrams were sorted out in descending order.

Nominal Mode

We used Cinebench 11.5. All tests were run five times and the average result of the five runs was taken for the performance charts.

We have been using Fritz Chess Benchmark utility for a long time already and it proved very illustrative. It generated repeated results, the performance in it is scales perfectly depending on the number of involved computational threads.

x264 FHD Benchmark v1.0.1 (64 bit) allows us to compare the system performance against the results in the database. The average results of the five test runs are displayed on the following diagram:

We measured the performance in Adobe Photoshop CS6 using our own benchmark made from Retouch Artists Photoshop Speed Test that has been creatively modified. It includes typical editing of four 24-megapixel images from a digital photo camera.

In the archiving test a 1 GB file is compressed using LZMA2 algorithms, while other compression settings remain at defaults.

Like in the data compression test, the faster 16 million of Pi digits are calculated, the better. This is the only benchmark where the number of processor cores doesn’t really matter, because it creates single-threaded load.

The next diagram shows only 3DMark Fire Strike CPU tests results. This score is obtained in a special physics test that emulates the behavior of a complex gaming system working with numerous objects. This test also proved great in testing the stability of the overclocked processors:

Intel HD Graphics 4000 core integrated into the processors is unable to cope with the load created by Fire Strike test from the new 3DMark. Therefore, we used Cloud Gate test from the same suite for our performance analysis and comparison against graphics solutions of the same category.

The benchmark integrated into the Hitman Absolution game turned out very convenient. It can be launched directly from the game, from the game launcher utility and even from the command prompt. In order to get the minimal acceptable results, we had to use the lowest image settings and use one of the lower resolutions.

Batman: Arkham City game also reacts eagerly to any changes in the CPU clock frequency, but it uses DirectX 11. We ran game’s integrated benchmark five times with high image quality settings and then take the average of the five runs for the diagrams.

As we’ve noted repeatedly in our reviews, similar mainboards are prone to deliver the same performance under identical conditions. You can see another proof in the results we got in the nominal mode: the difference between the two mainboards is minimal and doesn’t exceed even 1% in all of the tests. I would like to dwell only on two last benchmarks and their results at this point.

By the way, we had thought about removing the gaming tests or replacing them with simpler ones since you can’t expect a high gaming performance from an integrated graphics core. However, it turns out that you can run a game like Batman: Arkham City on a CPU-integrated graphics if you choose low visual quality settings and a low resolution. It depends on the specific game, though. For example, we couldn’t achieve a playable frame rate with Hitman: Absolution at such settings. Anyway, we've left these gaming tests as a good illustration of the capabilities of the CPU-integrated graphics core. It can't deliver high performance in heavy games, but you may achieve playability by tweaking in-game settings.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ]


Comments currently: 10
Discussion started: 07/11/13 09:51:41 PM
Latest comment: 03/08/16 03:50:25 AM

View comments

Add your Comment