Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]

Power Consumption

We performed our power consumption measurements using an Extech Power Analyzer 380803. This device is connected before the PSU and measures the power draw of the entire system (without the monitor), including the power loss that occurs in the PSU itself. In the idle mode we start the system up and wait until it stops accessing the hard disk. Then we use LinX to load the CPU. For a more illustrative picture there are graphs that show how the computer power consumption grows up depending on the number of active execution threads in LinX (both at the default and overclocked system settings). The mainboards on the diagrams are sorted out in alphabetical order.

We often point out that on many mainboards certain power-saving technologies are disabled by default. Therefore, besides power consumption in nominal mode with all default settings, we also measured the power consumption of test systems with all power-saving technologies (including the proprietary ones) manually enabled. The difference between these two tests is usually quite obvious, and naturally, this measure does lower the power consumption. The same was true this time, too: the board became more energy-efficient under any operational load. However, the paradox is that in idle mode the power consumption has slightly increased! It seems like one of the power-saving settings doesn’t work correctly after all.

As a result, if we compare the power consumption readings taken off tested mainboards in nominal mode, Asus Sabertooth X79 board doesn’t really stand out against the others’ background demonstrating average power consumption level (without taking into account the indisputable winner – the Intel board).

However, if we enable all existing power-saving technologies then the power consumption of most mainboards will drop. However, Intel mainboard is so incredibly energy-efficient right from the start that it remains an unattainable winner, and the most energy-hungry product under maximum operational load will be the Gigabyte one, which proprietary power-saving technologies do not work. However, as for the power consumption in idle mode, Asus Sabertooth X79 seems to be consuming more energy than the others: its power consumption didn’t go down, but, on the contrary, increased.

During overclocking the most energy-efficient solution will be MSI Big Bang-XPower II, because it overclocked the processor without increasing its core voltage. The resulting CPU frequency on this mainboard is the lowest of all that is why it is not surprising that its power consumption in overclocked mode is also the lowest. As for Asus Sabertooth X79, its power consumption in idle mode is again standing out, although this time the difference from other testing participants is minimal.


Summing up our experience with the ASUS Sabertooth X79 mainboard, we don’t want to recall the few minor shortcomings of this product we’ve noticed. They are mostly limited to BIOS options and are typical of many other ASUS mainboards. The overall impression from this mainboard is highly positive, so we want to talk about its highs rather than lows: the high-quality packaging, rich accessories, user-friendly design, broad functionality, and the special 5-year warranty of the TUF series. We didn't have any problems running this mainboard and it turned out to be good for CPU and memory overclocking.

In fact, the single serious downside we can find about it is that its cooling system employs nonstandard fans. It's going to be difficult to replace them if you need to. On the other hand, these small fans may last the whole service life of the Sabertooth X79 – the full five years or more – without giving you any hard time.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]


Comments currently: 8
Discussion started: 04/21/12 12:32:04 PM
Latest comment: 09/20/16 03:40:28 PM

View comments

Add your Comment

Latest materials in Mainboards section

Article Rating

Article Rating: 9.2105 out of 10
Rate this article: