Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 ]

Design and Features

There’s a logo of the Dual Intelligent Processors 4 technology on the mainboard’s box which promises 4-Way Optimization. This includes the DIGI+ power system with flexible settings for CPU and memory voltage. The TurboV Processing Unit (TPU) allows you to overclock your computer automatically while the Energy Processing Unit (EPU) will help you find the balance between performance and energy savings. Fan Xpert 2 ensures appropriate cooling at minimum noise.

The mainboard also supports the 5X Protection technologies we know from our review of the ASUS Z87-K model. 5X Protection covers a number of engineering solutions that make the mainboard more reliable and long-lasting such as protection against overloads, short circuits and electrostatic discharges. The digital voltage regulator DIGI+ delivers stable power while the solid-state capacitors and the steel I/O Shield coated with a thin layer of chromium oxide (to prevent corrosion) increase the service life of the mainboard.

The digital power system incorporates 16 phases. Its hottest components are cooled with two heatsinks. Moreover, there are two metal plates on the reverse side of the PCB opposite them, which prevent the PCB from bending and help dissipate the heat. One of the heatsinks uses a heat pipe to connect to the central heatsink. The latter doesn’t cool anything but enlarges the heat transfer area. All of the heatsinks, including the chipset one, are secured with screws. It must be noted that the heatsinks remain rather cool even at high CPU loads. The four DDR3 slots have a dedicated 2-phase power system and can take in up to 32 gigabytes of system memory working at clock rates up to 3000 MHz.

Besides the six SATA 6 Gbit/s ports (yellow connectors) provided by the Intel Z87 chipset, two additional ASMedia ASM1061 controllers offer four more ports (dark connectors), so the mainboard gives you a total of ten SATA 6 Gbit/s ports. The two PCIe 3.0 x16 slots can share the CPU-integrated PCIe lanes (1x16 or 2x8) whereas the third PCIe 2.0 x16 slot is based on the chipset’s PCIe lanes and works at x4 speed. AMD CrossFireX and Nvidia SLI are both supported. The expansion opportunities also include four PCIe 2.0 x1 slots. A PLX PEX 8608 switch is installed on the mainboard to provide eight additional PCIe lanes for the numerous extra controllers and expansion slots.

Overall, there are the following ports and connectors on the back panel:

  • Mini DisplayPort, HDMI and DisplayPort video outs;
  • Six USB 3.0 ports (blue connectors) which powered by Intel Z87 chipset with ASMedia ASM1074 splitter. Two additional USB 3.0 ports can mounted by internal pin-connector.
  • “USB BIOS Flashback” button;
  • Wi-Fi/Bluetooth module (AzureWave AW-CE123H);
  • Four USB 2.0 ports, another four ports are laid out as two onboard pin-connectors;
  • Two local network ports (network adapters are built on Gigabit Intel WGI217V and Realtek RTL8111GR controllers);
  • An optical S/PDIF and six analogue audio-jacks provided by eight-channel Realtek ALC1150 codec.

Based on a Broadcom chipset, the AzureWave AW-CE123H module supports dual-band Wi-Fi 802.11a/b/g/n/ac (2.4 and 5 GHz) and Bluetooth V4.0 (or Bluetooth V3.0+HS). The 802.11ac standard is not yet ratified, yet it can ensure a higher data-transfer rate than Wi-Fi 802.11n and there is already quite a lot of 802.11ac-compatible equipment available.

The mainboard supports USB BIOS Flashback, which has no counterparts on products from other brands. Some mainboards require that you install an OS to update their BIOS because they lack a BIOS-integrated update tool but here you don’t even have to assemble your PC – no CPU, no memory and no monitor is required. You only have to connect the power, attach a USB flash drive with firmware to the special USB port, press the USB BIOS Flashback button and wait for the update procedure to complete. This solution solves a lot of BIOS-related stability and compatibility problems, like when the system wouldn’t start up because the mainboard couldn’t identify your latest CPU. USB BIOS Flashback is going to save you a lot of trouble in such cases.

The ASUS Z87-Deluxe has two connectors for CPU fans and four connectors for system fans. Each connector is of the 4-pin variety. The CPU fan connectors can only regulate 4-pin fans whereas the system ones can lower the speed of 3-pin fans as well. Besides the highlighted Power and Reset buttons and the back-panel USB BIOS Flashback button, there is a MemOK! button for when the mainboard cannot start up due to memory-related problems and a Clear CMOS button for resetting BIOS parameters. There is also a DirectKey button, which loads the BIOS interface, but it is inconvenient to use when the mainboard is inside a closed computer case. Now its function is duplicated by the 2-pin Direct Connector you can route outside as a separate button or connect to the infrequently used Reset button of your computer case.

We’re already familiar with the two onboard switches: EPU (Energy Processing Unit) and TPU (TurboV Processing Unit). The former enables a power-saving mode whereas the latter helps overclock your computer. The TPU switch has three positions now. In one position the CPU is overclocked via its frequency multiplier and in the second position the base clock rate is adjusted as well.

The Q-Design technologies are meant to simplify the process of building and running an ASUS-based computer. These include a soft-padded I/O shield (Q-Shield), POST code indicators (Q-Code; there are two indicators on this mainboard, but the majority of 4-digit codes are reserved for the future, so only one indicator shows the bulk of the information), Q-LED indicators (for faster, even though less accurate, CPU, DRAM, VGA and Boot Device diagnostics), single-sided memory slot latches (Q-DIMM) and a set of adapters for connecting the USB 2.0 header and the computer case’s buttons and indicators (Q-Connector).

We’ve collected the key specs of the ASUS Z87-Deluxe in a single table:

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 ]


Comments currently: 14
Discussion started: 12/06/13 10:28:54 AM
Latest comment: 09/20/16 01:01:46 PM

View comments

Add your Comment