Articles: Mainboards
 

Bookmark and Share

(11) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 ]

Conclusion

At the current moment the Z87-K is the junior ATX product from ASUS which is based on the Intel Z87 chipset. It is rather simple, lacks any extras like buttons or indicators, and has but a few additional controllers. The mainboard doesn’t even use the chipset’s capabilities to their full extent, being limited to only four USB 3.0 ports and not capable of sharing CPU-based PCIe lanes between graphics slots. Thanks to this simplicity, the product is inexpensive while offering a full set of basic features. That’s actually what makes it so attractive. We have no doubt it is going to be a market success.

In this review we've noted its various downsides, from the error that makes the CPU work at a lower than required frequency at high loads to certain flaws in the new BIOS version, but such problems are unavoidable at the early stages of development. We actually like ASUS mainboards. We use them and recommend them to others, so we do hope that any downsides we've found will soon be eliminated.

As opposed to the mainboard, our opinion about the LGA1150 platform at large and its particular components is rather pessimistic. First of all, the new series of Intel chipsets are not a big improvement on their predecessors. The additional pair of USB 3.0 ports has little practical worth whereas the transition of all SATA ports to the 6 Gbit/s standard is a long-anticipated but belated innovation since AMD chipsets have long offered such capabilities. These minor improvements would make the new chipset series better than their predecessors anyway if it were not for the recently discovered bug: disks connected via USB 3.0 may get disconnected when switching into sleep mode. This bug will surely be solved but defective chipsets have already gone on sale and it will take months for the release of new revisions. Hopefully, this will be the only problem found in the new chipset series.

As for the new Haswell-core CPUs, they turn out to be even worse than expected. In fact, they only have three advantages in comparison with their predecessors. They are more economical in idle mode, they support the new AVX2 instruction set which may bring about a considerable performance boost in optimized applications, and they are equipped with a faster graphics core which is not necessary for enthusiasts at all. The high-precision voltage regulator, now implemented right on the CPU die, would be an advantage as well, but its current behavior at overclocking is unacceptable. When the computer works at its default settings, the voltage is indeed set with unprecedented precision, but at overclocking it may go up by a few tenths of a volt and there’s no talking about precision anymore. The new CPUs offer the same performance while the rest of their parameters have become worse. They need more power at high loads and their overclocking potential is considerably lower. When the LGA2011 platform was announced, we complained that we got server CPUs under the disguise of desktop ones, but it turns out that mobile CPUs disguised as desktop CPUs are even worse!

It must be admitted that the orientation at mobile CPUs is going to be justified in the long-term perspective. Why do we prefer desktop PCs to mobile gadgets anyway? First of all, it is the matter of free choice. Basing on your personal preferences, you can take any mainboard, any compatible CPU, any cooler you find appropriate in terms of noise and efficiency. You then add as much memory and as many disks as you want. All of this is assembled in the computer case of your own choosing, so you get a customized computer whose configuration is optimal for you. That’s quite the opposite of what you get with mobile gadgets where you may only choose the amount of memory or the color of the case. For all such limitations, mobile devices are hugely popular, so what about other advantages that desktop PCs can offer? There are three of them, we guess. The first one is the convenience of input and control. A physical keyboard is handier than an onscreen one while a mouse is more convenient as a pointing device than your finger on a touch-sensitive screen. Secondly, a large monitor is always better for work or play than a tiny screen. And third, desktop CPUs are much faster than their mobile counterparts.

However, even today, with the technologies we have at hand, it is quite possible to avoid the limitations and downsides associated with mobile computers. You can imagine yourself entering your house with a mobile gadget which immediately connects to a keyboard and mouse via Bluetooth or some other wireless technology. Wireless interfaces like Wireless Display can also be used to output visual content to a large, high-resolution stationary monitor. When you can connect to the electric mains, there is no need to use the mobile gadget’s battery and the processor can switch to a higher-performance mode instead of trying to save power. So, the mobile computer of the future won’t be any different from today’s stationary desktop PCs in functionality or usability but it will offer the added advantage of portability as you can easily take it with you and connect to network and external I/O devices at a coffee or at your friends’. We guess the difference between desktop and mobile computers is going to shrink until it disappears completely. But so far we are up to some troubles of the transition period. Hopefully, it won’t take long because with each new CPU generation mobile processors get faster and better while desktop processors get slower.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 ]

Discussion

Comments currently: 11
Discussion started: 09/13/13 02:10:21 AM
Latest comment: 04/03/14 03:39:29 AM

View comments

Add your Comment




Latest materials in Mainboards section

Article Rating

Article Rating: 8.8889 out of 10
 
Rate this article:
Excellent
Average
Poor