Articles: Mainboards
 

Bookmark and Share

(10) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]

Design and Functionality

As we have been promised and as we have expected, Biostar TA990FXE doesn’t strike us in any particular way with its exterior looks. It looks like a common mainboard, with the nearly classical and therefore most convenient design. So, how does it differ from the other manufacturers’ mainboards, which we tested before?

As for the supported CPU types, everything is exactly the same here. The board can work with the new Socket AM3+ as well as the older Socket AM3 with up to 140 W TDP. However, it only supports no more than 16 GB of system memory, while all others allow installing up to 32 GB. However, this is the information from the manufacturer web-site, while the user manual included with the board promises up to 32 GB RAM support. The graphics card slots also work differently. The mainboard formally supports up to three graphics cards, as you can guess by looking at three PCI Express 2.0 x16 slots and two flexible bridges for AMD CrossFire configurations included with the accessories. But in reality the mainboard is designed to only work with two graphics cards. Why? Not only because the third graphics card slot has only four PCI-E lanes from the South Bridge at its disposal, which will have its toll on performance. But mostly because the second and third graphics card slots are located to close to one another, so that the dual-slot cooling system of the graphics card installed into the second slot will block the third slot completely.

In fact, I am not really upset about this whole situation and do not consider it an issue that the board can only work with only two graphics cards simultaneously. Not that many users work with dual-card configurations, and triple-card configurations are even rarer. Instead, the functionality of the AMD 990FX chipset allows the two graphics cards in a system like that to work at full PCI Express 2.0 x16 speed without any limitations. The only drawback in this case is that the mainboard doesn’t support Nvidia SLI and you can only use AMD based graphics accelerators for multi-card configurations. Another shortcoming is the lack of fan connectors. There are only three of them on Biostar TA990FXE, and only the rotation speed of the processor fan can be adjusted. The heatsinks on the chipset North Bridge and on the processor voltage regulator components are pretty massive and are connected with each other via heatpipe, but all three mainboard heatsinks use a pretty weak and unreliable retention – plastic push-pins with springs.

I am afraid you couldn’t notice it on the photographs, but even if you look at the pretty rough components layout, you will see a row of LEDs in the upper left corner of the PCB, right above the eight-pin ATX12V CPU power connector. These are NB/CPU Status LEDs, which allow users to visually monitor the status of Biostar’s proprietary technology, which dynamically changes the number of active phases in the processor voltage regulator circuitry depending on the operational load. You will find the Power On and Reset buttons in the lower right corner of the board alongside with the POST-code indicator. However, I have to admit that I only called these two identical and barely noticeable stumps “buttons” from force of habit. They could definitely use some caps and maybe even highlighting. However, the POST-code indicator will come in handy not only if you want to determine the cause of startup issues. After the startup is complete it will display lower CPU temperature read off a diode from somewhere around the CPU socket.

These are the ports and connectors available on the Biostar TA990FXE back panel:

  • PS/2 connectors for keyboard and mouse;
  • Coaxial and optical S/PDIF and six analogue audio-jacks provided by eight-channel Realtek ALC892 codec;
  • Only four USB 2.0 ports, with only four more laid out as two onboard pin-connectors;
  • IEEE1394 (FireWire) port implemented via VIA VT6315N controller, the second port is available as onboard pin-connector;
  • eSATA port implemented via AMD SB950 South Bridge with five remaining SATA 6 Gbps ports laid out as onboard connectors;
  • Two USB 3.0 ports (blue connectors) implemented via ASMedia ASM1042 controller, second controller like that provides an additional internal pin-connector for two more USB 3.0 ports;
  • A local network port (network adapter is built around Gigabit Atheros AR8151 network controller).

The table below sums up all the technical characteristics of Biostar TA990FXE mainboard:

At this point we can conclude that Biostar TA990FXE mainboard is almost the same as other products based on the same chipset we have tested so far. The difference is that the four memory DIMMs it can accommodate can only add up to 16 GB total RAM size, while others support up to 32 GB. The preferable graphics card configuration with this mainboard can only include two graphics cards, and Nvidia SLI is not supported at all. You can connect three cooling fans to this mainboard, with only one (processor) fan supporting rotation speed adjustment. It doesn’t have any additional drive controllers, is equipped with two ASMedia ASM1042 controllers for USB 3.0, which we have only seen on Asus mainboards before, and for the Gigabit network they use Atheros AR8151, which we have never seen before on any other mainboards. Out of fourteen USB 2.0 ports originally supported by the chipset, there are only eight on Biostar TA990FXE: four on the back panel and four in the form of onboard pin-connectors. The cooling system heatsinks use not very secure and reliable push-pin retention.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]

Discussion

Comments currently: 10
Discussion started: 12/09/11 06:36:39 PM
Latest comment: 02/01/13 09:16:42 AM

View comments

Add your Comment