Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]

Operational and Overclocking Specifics

When we power up Gigabyte GA-X79-UD7 mainboard, we see a startup image, which also lists all “hot” keys for your reference.

It doesn’t make sense to disable the startup image or use the “Tab” key. The mainboard doesn’t display any information about the POST progress. The only thing you are going to see is the AMI BIOS logotype. The F9 key for displaying system info seems like a doubtful and unequivalent replacement. Primarily, because the board starts up very fast and you often don’t have enough time to press it. Moreover, you don’t get that much useful info anyway: the actual CPU frequency is displayed incorrectly, and the memory frequency is not displayed at all.

There are, however, a few positive improvements, too. For example, during the first boot up after resetting the BIOS parameters the mainboard stops and offers you to adjust the settings:

At first we were alternating BIOS versions F2 and F4. It is very convenient to test different settings profiles switching between BIOS versions with the “DualBIOS Switcher” button. However, once we updated the BIOS with version F7, the mainboard also updated the BIOS in the reserve chip:

This update was performed automatically, we were just informed about it post-factum, we weren’t asked whether we wanted to proceed or not. As a result, all the settings and saved profiles in the reserve chip were lost. Unfortunately, unlike Asus mainboards, the two BIOS chips on Gigabyte GA-X79-UD7 turned out not so independent after all. Looks like we still don’t have the ability to work with each of them completely separately.

We were not impressed with the results of automatic overclocking performed by pressing the “OC Button” on the back panel of the mainboard. At the same time the maximum clock frequency multiplier for our processor, 39x, which is used when only one or two cores are utilized, was increased to 42x, while all other multipliers remained the same. Moreover, power saving technologies partially stopped working: the processor clock frequency multiplier still dropped to 12x in idle mode, but the core voltage always remained high. All in all, the current implementation of the automatic overclocking on Gigabyte GA-X79-UD7 mainboard is inefficient, and it would make more sense to use manual overclocking options, because in this case everything went flawlessly and we didn’t have a single issue.

We have already mentioned that even though we used a new cooler from Zalman, the CNPS12X, we couldn’t improve the maximum overclocking results for our processor. However, we managed to reach the current maximum of 4.4 GHz for our specific sample without any problems. The memory in this case also worked at its nominal frequency of 1866 MHz with the proper timings.

We always overclock mainboards in such a way that they could be used for a prolonged period of time in this mode. We do not try to make our life easier by disabling any of the mainboard features, such as onboard controllers, for example. We also try to keep the CPU's power-saving technologies up and running normally to the best of our ability. And this time all power-saving technologies remained up and running even in overclocked mode lowering the CPU voltage and frequency multiplier in idle mode.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]


Comments currently: 7
Discussion started: 01/21/12 05:56:52 PM
Latest comment: 03/08/16 03:54:53 AM

View comments

Add your Comment