Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

Intel Smart Response Technology

We performed the tests above using our standard testbed configuration with a Kingston Now V+ Series solid state drive (SNVP325-S2, 128 GB). However, this configuration didn't allow us to test Intel Smart Response technology the Gigabyte GA-Z68XP-UD3-iSSD is specifically optimized for. So we ran an additional round of tests using disk drives of various types and capacities. Gigabyte has several mainboard models equipped with an mSATA connector that can accommodate a drive with suitable storage capacity.

First we want to mention one handy tool called Gigabyte EZ Smart Response. Buying an SSD and connecting it to your system is not enough to enable Intel Smart Response. You will have an error message that the system doesn’t meet the minimum requirements. So, you have to first change the disk operation mode to RAID in the mainboard’s BIOS, install the driver and then use Intel Rapid Storage Technology to enable disk caching. Our case was even more difficult since we had the OS already installed and switching to the RAID mode produced a blue screen of death during boot-up.

The Gigabyte EZ Smart Response tool saves you the trouble of going through all these steps by yourself. You just launch that tool – it doesn’t even have a graphical interface because it doesn’t need one – and get Intel Smart Response up and running after a couple of reboots.

To check out the performance benefits of Intel Smart Response we used the integrated disk test from PCMark 7. First we ran the test on the MSI mainboard using a Kingston Now V+ Series SSD (SNVP325-S2) and scored 4494 points. We then ran the same test on the Gigabyte mainboard, switching the disk controller to AHCI mode. The score was 4503 points. Then we copied the test content to an ordinary hard disk drive (Seagate Barracuda 7200.10, ST3320620AS, 320 GB) and carried out the same test. The performance hit was terrible as we only scored 1664 points in PCMark 7.

Now let's turn on Intel Smart Response. During the boot-up process the controller reports which of the connected disks have been accelerated but you can turn off these messages in the mainboard's BIOS.

Besides the default Intel 311 series SSD (SSDMAESC020G2, 20 GB) shipped together with the Gigabyte GA-Z68XP-UD3-iSSD, we also tried two other SSDs with different storage capacities: an Intel SSDMAEMC040G2 (40 GB) and an Intel SSDMAEMC080G2 (80 GB). The first one uses SLC flash memory with higher write speed and an increased number of overwrite cycles compared to regular MLC-based SSDs. However, the larger two SSDs in our test session belong to the previous Intel 310 series and use MLC flash memory chips. You can see the results of the test in the next diagram:

The higher-capacity SSDs are somewhat slower than the default one, which can be explained by lower write speed, yet the difference is fairly small. Well, we only booted the OS up and launched the disk test from PCMark 7, so the capacity of the 20GB model was quite enough. In real-life scenarios the computer is used to run multiple applications and the size of the caching SSD is going to be a more important factor. Anyway, we can observe a 100% and higher performance growth compared to the ordinary HDD, so Intel Smart Response is surely a useful technology.

However, you should keep it in mind that it only works with repeating tasks such as the PCMark 7 test. When you launch an application for the first time, the speed of its loading is going to be limited by the speed of your HDD. Moreover, replacing your HDD with an SSD is going to give you an even faster disk subsystem without any reservations.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]


Comments currently: 1
Discussion started: 09/17/11 10:14:39 AM
Latest comment: 09/17/11 10:14:39 AM

View comments

Add your Comment