Articles: Mainboards

Bookmark and Share

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

Design and Functionality

Only at first glance you may think that Intel DP55KG mainboard is designed following the classical traditions. In reality it has a number of special peculiarities. For example, Intel DP55KG PCB surface is all covered in numerous components and contact tracks, like all other mainboards. However, this normal looks continues only up to the line going through the first top PCI connector. After that we‘ve got a lot of empty space. Pretty strange, isn’t it?

At this point I would like to recall that Intel has four LGA1156 mainboards in their lineup based on Intel P55 Express chipset. However, Intel DP55KG is built not after a full-size Intel DP55WG, but after a microATX Intel DP55SB, which also belongs to Extreme series. Just look at the photo of the small DP55SB and will immediately notice amazing similarity between it and our today’s hero.

Usually when we talk about microATX mainboards we point out their differences from the full-size ATX solutions by listing the things that had to be sacrificed for the sake of smaller more compact size. This time things seem to be a bit different. We get the impression that they didn’t cut down Intel DP55KG mainboard to become a microATX modification, but used Intel DP55SB as a basis for designing the full-size DP55KG that is why we have all that empty space on the PCB, which had to be filled with something. The primary difference between the ATX and microATX board is obviously larger number of expansion slots: besides two graphics card slots and two PCI Express 2.0 x1 slots, they also added two regular PCI and one PCI Express 2.0 x4 slot.

Like many other mainboards on Intel P55 Express chipset, only the first PCI Express 2.0 x16 connector on Intel DP55KG can actually work at its full speed. If we install two graphics cards, the speed is reduced by half. In this case, Gigabyte would only lay out half of connector contacts inside the second PCI Express x16 slot, because the second half won’t ever be used anyway. Intel takes a different approach: the second graphics card slot is an almost common PCI Express x8, while the third one – PCI Express x4. The difference is the use of connectors with open back sides and the graphics card retention at a little distance. Another peculiarity is the implementation of additional power supply for graphics accelerators: they use a power connector similar to those for SATA devices instead of a common large four-pin or small four-pin connector, like the one used for floppy disk drives.

On the other side of the PCB we see six Serial ATA ports provided by the chipset and two additional SATA ports implemented via Marvell 88SE6145 controller. The skull emblem this time serves more than just a decorative purpose. The outline of the skull will be highlighted blue and the eyes will blink red indicating HDD activity. It looks very attractive, but the skull took the spot originally occupied by the front panel contact and indicator connectors, which had to be moved higher up – they are not a little below the 24-pin power connector. The USB and IEEE1394 (FireWire) connectors are located there, too, which is very convenient for the front or top panel ports and very inconvenient for back panel ports. The POST code indicator also didn’t find a convenient location and had to move a little above the first PCI Express x16 graphics card slot. That is why you may have hard time taking the readings off of it, as it will be squeezed between the graphics card on one side and processor cooler on the other.

Note that the processor voltage regulator components have only two small aluminum heatsinks installed over them, which are fastened with regular plastic spring clips. Intel P55 Express chip is topped with a tiny aluminum heatsinks pressed securely with a steel bracket.

Almost the same heatsinks used to be installed over the chipset South Bridge chips. Just in case let me remind you that Intel DP55KG belongs to Extreme Series and boasts some overclocking functionality, but the CPU and chipset developer is still convinced that this simple cooling solution will be sufficient for any work modes. This once again proves that extremely complex chipset coolers with numerous massive heatsinks and heatpipes, which we have already seen on several LGA1156 mainboards, serve merely as customer appeal rather than cooling.

The back panel of Intel DP55KG mainboard carries the following ports and connectors:

  • Two eSATA ports supported by the above mentioned Marvell 88SE6145 controller;
  • It is for the first time that Intel added a “Back to BIOS” button to the traditional jumper;
  • Optical and coaxial S/PDIF out and six analogue audio-jacks, provided by the eight-channel Realtek ALC889 codec;
  • Eight USB ports, four more are available as onboard pin-connectors;
  • IEEE1394 (FireWire) port implemented due to Texas Instruments TSB43AB22A controller, the second port is available as an onboard pin-connector;
  • Local network connector (network adapter is built on Intel 82578DC Gigabit controller).

Since the integrated Bluetooth controller uses one USB port, there remain 13 USB ports. Eight of them are on the mainboard back panel, four more exist as onboard pin-connectors and one more is an internal one. It is located between the processor socket and back panel ports and connectors, a little below the eight-pin processor power connector.

The components layout for Intel DP55KG mainboard shows a Power On button marked with the letter “V”. By the way, there is a large decorative white LED right next to it. It is turned off by default, but you can turn it on in the BIOS and adjust its brightness. It can also be switched to blinking mode, if necessary. As I have already said, the skull’s eyes indicate HDD activity. Besides, there are two LEDs that will light up in case CPU or its voltage regulator gets overheated (“P” and “Q”). The LED next to the 24-pin power supply connector indicates that the board receives power (“W”). You may have noticed that the board is free from all “obsolete” interfaces, such as PS/2 keyboard and mouse connectors, COM and LPT ports, IDE and FDD connectors.

Intel DP55KG mainboard has an integrated piezo-buzzer that beeps on every system star. There is no way to disable it, but the good thing is that it only beeps once instead of four, like on DFI LANPARTY DK P55-T3eH9 mainboard.

The table below sums up all technical specifications of the Intel DP55KG mainboard:

Overall, Intel DP55KG layout doesn’t get us raving. I also can’t say that we dislike it, but a few small drawbacks and inconveniences do spoil the impression. They have mostly appeared because the developers didn’t use the entire available PCB space. However, they did have an advantage over those makers who also had to find a place for IDE, FDD and sometimes even COM ports. It is highly likely that trying to save on development and production costs they took a microATX mainboard as a basis for their DP55KG solution. But although certain drawbacks could be justified for a microATX mainboard, we can’t overlook them in case of a full-size ATX solution, especially the top-tier flagship one. It must be ideal, but unfortunately, Intel DP55KG didn’t become that role model we’ve been looking for.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]


Comments currently: 6
Discussion started: 12/03/09 04:01:06 PM
Latest comment: 05/17/13 04:19:24 PM

View comments

Add your Comment