Articles: Mainboards
 

Bookmark and Share

(6) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

Operational and Overclocking Specifics

We installed Intel Desktop Control center program to check if Intel DP55KG mainboard would increase the rotation speed of the processor fan under load. No it doesn’t if you are using a high-end processor cooler. It is good, because at 500 RPM you can’t really hear the fan working, but it is also bad because the load is pretty high and the heatsinks over processor voltage regulator components heat up quite substantially. They don’t get scorching hot, but they heat up way more than on other mainboards, they need more airflow coming their way, although the CPU temperature in this case remains within acceptable limits.

However, processor fan rotation speed control feature does work on Intel DP55KG mainboard. We could really tell without any programs or utilities when we started our overclocking experiments. For initial stability check we use LinX utility – this is a shell for Intel Linpack test that loads the CPU very heavily. This load is not constant, but cyclic. In the beginning of each calculations cycle the fan rotation speed increases rapidly to its maximum and then immediately dropped as soon as the cycle was over. This repeated howling of the fan makes it unbearable to work in close proximity of the Intel DP55KG mainboard. Moreover, the CPU temperature turned out significantly higher (by about 5°C) than on other mainboards in the same testing conditions or at constant maximum fan rotation speed.

5°C doesn’t seem like a big number, but 82°C is just a little over 80-degree threshold, while 87°C is already almost 90°C. At this point DFI LANPARTY DK P55-T3eH9 mainboard comes to mind, because we were also concerned about the efficiency of its fan rotation speed control function at first. While the maximum fan rotation speed was 2200 RPM, the board didn’t increase it beyond 1850 RPM. But it turned out that despite this fact, the difference in CPU temperature between the 1850 RPM and maximum rotation speed was only 1-2°C. So why would we need to speed up the fan even more if the current speed was already sufficient for proper cooling? We wouldn’t and that is why we really liked the principles of fan rotation speed control implemented in DFI mainboard, and didn’t like the ones used in Intel one. To be fair I have to say that even despite this acoustically unpleasant and not very efficient implementation of the fan rotation speed control feature, Intel DP55KG mainboard did provide sufficient cooling even for an overclocked processor. And with less stressful test applications the noise won’t be so significant. However, I still don’t think that the rotation speed control algorithms on Intel DP55KG can be considered a success. Besides, we can’t adjust them in the BIOS, like we could on other mainboards, or using the IDCC tool. The latter only allows locking the rotation speed at a certain selected value.

CPU overclocking on Intel DP55KG mainboard also caused us some problems. It could only work at 200 MHz base clock, while many other mainboards we tested before allowed us to go as high as 210 MHz. So, it shouldn’t be surprising that the maximum CPU overclocking on Intel DP55KG stopped at 3.9 GHz.

Like all other mainboards, Intel DP55KG keeps all processor power-saving technologies up and running during dynamic Vcore increase. Not only the processor clock frequency multiplier but also the its core voltage will lower in idle mode.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]

Discussion

Comments currently: 6
Discussion started: 12/03/09 04:01:06 PM
Latest comment: 05/17/13 04:19:24 PM

View comments

Add your Comment