Articles: Mainboards
 

Bookmark and Share

(1) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 ]

Performance Comparison

As usual, we are going to compare the mainboards speeds in two different modes: in nominal mode and during CPU and memory overclocking. The first mode is interesting because it shows how well the mainboards work with their default settings. It is a known fact that most users do not fine-tune their systems, they simply choose the optimal BIOS settings and do nothing else. That is why we run a round of tests almost without interfering in any way with the default mainboard settings. For comparison purposes we will also include the results of the previously reviewed Asus P9X79 Deluxe and Gigabyte GA-X79-UD7 mainboards. The results on the diagrams are sorted in descending order.

We used Cinebench 11.5. All tests were run five times and the average result of the five runs was taken for the performance charts.

We have been using Fritz Chess Benchmark utility for a long time already and it proved very illustrative. It generated repeated results, the performance in it is scales perfectly depending on the number of involved computational threads.

A small video in x264 HD Benchmark 4.0 is encoded in two passes and then the entire process is repeated four times. The average results of the second pass are displayed on the following diagram:

We measured the performance in Adobe Photoshop using our own benchmark made from Retouch Artists Photoshop Speed Test that has been creatively modified. It includes typical editing of four 10-megapixel images from a digital photo camera.

In the archiving test a 1 GB file is compressed using LZMA2 algorithms, while other compression settings remain at defaults.

Like in the data compression test, the faster 16 million of Pi digits are calculated, the better. This is the only benchmark where the number of processor cores doesn’t really matter, because it creates single-threaded load.

Since we do not overclock graphics in our mainboard reviews, the next diagram shows only CPU tests from the 3DMark11 – Physics Score. This score is obtained in a special physics test that emulates the behavior of a complex gaming system working with numerous objects:

We use FC2 Benchmark Tool to go over Ranch Small map ten times in 1920x1080 resolution with high image quality settings in DirectX 10.

Resident Evil 5 game also has a built-in performance test. Its peculiarity is that it can really take advantage of multi-core processor architecture. The tests were run in DirectX 10 in 1920x1080 resolution with high image quality settings. The average of five test runs was taken for further analysis:

The obtained results are very discouraging. We have always said that related mainboards working in identical testing conditions demonstrate about the same level of performance, but unfortunately Intel DX79SI mainboard doesn’t agree with this rule. Only in the first three tests with mostly computational type of load this board is a little behind the competitors: the performance difference between the boards is around 1%. However, as on we go the performance difference increases and ranges anywhere from at least 2% and beyond 7% in some tasks! This is a very serious lag that is why once we got these numbers we were no longer worried about having selected the proper overclocking mode. It doesn’t matter which of the two we will sacrifice: the CPU or memory frequency. Intel mainboard will anyway be slower than the others, because it is not only unable to fully overclock the system, but is unacceptably slow even in identical testing conditions.

Since the CPU frequency in the Intel mainboard is significantly lower during overclocking, the performance difference between the systems tested in overclocked mode increases even more and approaches 10%. These results could force us to recommend avoiding this mainboard altogether, but let’s not draw any hasty conclusions and check out its power consumption first.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 ]

Discussion

Comments currently: 1
Discussion started: 02/09/12 11:49:10 PM
Latest comment: 04/13/12 03:50:46 PM

View comments

Add your Comment