Articles: Mainboards
 

Bookmark and Share

(3) 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]

Testbed Configuration

We performed all our tests on a testbed built with the following components:

  • Mainboard: MSI Z77 MPOWER, MS-7751 ver.4.1 (LGA 1155, Intel Z77 Express, BIOS version 17.5B7);
  • Intel Core i5-3570K CPU (3.6-3.8 GHz, 4 cores, Ivy Bridge rev.E1, 22nm, 77 W, 1.05 V, LGA 1155);
  • 2 x 4 GB DDR3 SDRAM Corsair Vengeance CMZ16GX3M4X1866C9R (1866 MHz, 9-10-9-27 timings, 1.5 V voltage);
  • Gigabyte GV-T797OC-3GD (AMD Radeon HD 7970, Tahiti, 28 nm, 1000/5500 MHz, 384-bit GDDR5 3072 MB);
  • Crucial m4 SSD (CT256M4SSD2, 256 GB, SATA 6 Gbps);
  • Scythe Mugen 3 Revision B (SCMG-3100) CPU cooler;
  • ARCTIC MX-2 thermal interface;
  • Enermax NAXN ENM850EWT PSU;
  • Open testbed built using Antec Skeleton system case.

We used Microsoft Windows 7 Ultimate SP1 64 bit (Microsoft Windows, Version 6.1, Build 7601: Service Pack 1) operating system, Intel Chipset Software Installation Utility version 9.3.0.1020, AMD Catalyst graphics card driver version 12.4.

Reflashing and Restoring the BIOS

All recently reviewed mainboards features convenient and thought-through design that is why it was very easy to assemble test systems based on them. MSI Z77 MPOWER mainboard was also no exception: we assembled the system very quickly and it was fully operational right from the start. However, shortly after we had to deal with a variety of challenges. First of all, upon the very first attempt to reflash the BIOS, one of the BIOS chips failed. Here I have to point out that the BIOS reflashing procedure with the M-Flash utility has been slightly modified. Previously, there was a single parameter that offered you to select a BIOS file. Now there is a second parameter that allows simultaneously updating the BIOS and the ME (Intel Management Engine). We selected the second option, because the list of changes introduced in the new BIOS version 17.4, which we were going to relfash, included “Update ME firmware”. Everything took off to a good start. We got a warning about the importance of uninterrupted reflashing process, and a continuous progress report in percents.

However, as soon as we got 50% through the process, another message popped up reminding us not to remove the drive with the BIOS file, because Intel ME will be updated immediately after system reboot.

After system restart, the process continues and in the end we get a success confirmation.

I have to mention that we have already come across a similar two-step reflashing process on the mainboards from other manufacturers, for examples, Asus. However, there are a few very important differences between them. First, the user doesn’t have to decide between two mutually exclusive options – update just the BIOS or update the BIOS and the ME. There is only one option – update the BIOS. In this case the BIOS update proceeds normally, and if the file also contains the Intel ME update, it will automatically be performed right after the system reboot. The second important difference is that upon successful completion of step one, you may remove the USB drive, because the BIOS update file is saved in the memory and the process continues without interruption. However, you may easily overlook the second warming on MSI mainboard at a 50% mark. The only way to notice it is if you are constantly watching the status bar. I can easily picture a situation when the user walks away from the system for a minute and then comes back when it is already rebooting. He or she may assume that the reflashing has been successfully completed and may remove the USB drive, which will cause a failure and leave the user with a non-operational system. In our opinion, the new BIOS updating process on Micro-Star mainboards is somewhat confusing and poses higher risk of human error.

However, one non-operational BIOS chip is not the end of the world, because we have a backup chip, which can help restore the primary one. The description of the BIOS restore process is very simple and intuitive. Use the onboard switch to select the operational BIOS chip, boot the system, and if necessary save the operational BIOS image on a USB flash drive. After that switch back to the non-operational chip and restore it.

Everything is very simple, but unfortunately, it didn’t work. If we selected the “Update BIOS” option, the process completed, but the board still couldn’t boot. If we selected “Update BIOS and ME” parameter, the first step completed successfully, but after the system reboot the board still couldn’t start to complete the second step. Looks like the MSI’s BIOS restore procedure has failed again. Previously, we had issues with two BIOS chips on the MSI X79A-GD (8D), as you may remember from our review.

However, we didn’t lose hope. We still had an operational backup BIOS chip, which we could use. And we were right not to give up: the latest BIOS version available to us at the time of the review, version 17.4, had been successfully reflashed, and we proceeded to studying the mainboard functionality. However, we were struck with another series of challenges. First, we once again had some difficulties saving BIOS settings in the profiles with even numbers, although this time the problems were of a slightly different sort than before. As you may remember, when we reviewed MSI Big Bang XPower II and MSI X79A-GD65 (8D) mainboards, we were puzzled to notice that the settings saved in the even profiles simply disappeared after system reboot. This time, the profiles were there, but the system would freeze dead upon an attempt to restore the settings profile number 2, and in case of a profile number 4, the settings recovered were totally different from what we had previously saved in it.

Semi-operational settings profile system is a concern, but not a deal-breaker for studying the mainboard functionality. Unfortunately, we soon uncovered a more serious problem: the very first graphics card slot didn’t work properly. The card installed into it would work, but would show much lower performance, which sometimes would get as low as only half of the normal level. The second slot work fine, but it was design for a second graphics card, which meant that it only had half the pins. As a result, a single card installed into the second slot could only work at PCI Express 3.0 x8 speed, which would make a direct comparison against other mainboard unfair. As a result, we had to report the issues to MSI and wait until we could find a cure.

Thanks to very rapid and proactive response from MSI team, we soon managed to restore the non-operational BIOS chip with the help of Intel Flash Programming Tool. We even reflashed a beta BIOS version 17.5B7. Although the recovery process was a little tricky (we had to save the unique ID of our network card before the procedure), it wasn’t difficult at all.

It turned out that the new beta BIOS didn’t have any of the issues related to settings profiles and the first graphics card slot was working perfectly fine again. We confirmed that there was no physical issue with the card slot by switching back to the backup BIOS chip with the version 17.4, when we would again witness lower graphics performance. Now with the new perfectly debugged BIOS we could finally proceed with our examination of the mainboard functionality and performance.

 
Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ]

Discussion

Comments currently: 3
Discussion started: 01/25/13 08:42:33 PM
Latest comment: 01/10/14 03:29:40 AM

View comments

Add your Comment