Bookmark and Share


A layer of graphene can reduce the working temperature in hotspots inside a processor by up to 25%, which can significantly extend the working life of computers and other electronics. An international group of researchers, headed by Chalmers University of Technology in Sweden, have proven that graphene has a heat dissipating effect on silicon based electronics.

“This discovery opens the door to increased functionality and continues to push the boundaries when it comes to miniaturizing electronics,” said Johan Liu, a Chalmers professor, who heads the international research project.

Modern electronic systems generate a great deal of heat, above all due to the constantly increasing demand for more and more functionality. It is important to be able to remove the heat generated in an efficient way to maintain the long life of the system. One rule of thumb is that a 10°C increase in working temperature halves the working life of an electronics system. 

During the study, the researchers focused on reducing the temperature in the small area where the electronics work most intensively, such as inside a processor, for instance. These tiny hotspots are found in all electronics. Size wise, they are on a micro or nano scale, in other words a thousandth of a millimetre or smaller.

“The normal working temperature in the hotspots we have cooled with a graphene layer has ranged from 55°C to 115°C. We have been able to reduce this by up to 13°C, which not only improves energy efficiency, it also extends the working life of the electronics,” said Mr. Liu.

Measuring only one atom thick, graphene is classed as a 2D structure with super-useful properties. While thin, it is also the strongest material ever tested, having a breaking strength 300 times greater than steel. Graphene has been subject to a scientific explosion since the groundbreaking experiments on the novel material less than ten years ago. Graphene’s unique combination of superior properties makes it a credible starting point for new disruptive technologies in a wide range of fields.

Efficient cooling is a major challenge in many different applications, such as automotive electronics, power electronics, computers, radio base stations and in various light emitting diodes, or LED lights. In automotive electronics systems, any single device in the ignition system can pump out up to 80W continuously and in transient stage up to 300W (within 10ns). LED devices can have a thermal intensity almost on a par with the sun, up to 600W/cm2 due to their extremely small size.

Superior cooling of electronics can deliver tremendous advantages. According to a recent study in the USA based on data from 2006, around 50% of the total electricity used to run data servers goes on cooling the systems.

Tags: Graphene


Comments currently: 3
Discussion started: 07/05/13 04:58:44 AM
Latest comment: 11/25/13 08:04:13 AM
Expand all threads | Collapse all threads


Ivy Bridge and newer FinFET based Intel processors could definitely use this tech as they have serious thermal issues.
2 4 [Posted by: beenthere  | Date: 07/05/13 04:58:44 AM]
- collapse thread

Say what now
0 0 [Posted by: daneren2005  | Date: 07/08/13 03:35:31 PM]

Can I cover the top of my CPU with lead pencil (mostly carbon) instead of thermal paste ?
0 0 [Posted by: tygrus  | Date: 11/25/13 08:04:13 AM]


Add your Comment

Related news

Latest News

Monday, July 21, 2014

12:56 pm | Microsoft to Fire 18,000 Employees to Boost Efficiency. Microsoft to Perform Massive Job Cut Ever Following Acquisition of Nokia

Tuesday, July 15, 2014

6:11 am | Apple Teams Up with IBM to Make iPhone and iPad Ultimate Tools for Businesses and Enterprises. IBM to Sell Business-Optimized iPhone and iPad Devices

Monday, July 14, 2014

6:01 am | IBM to Invest $3 Billion In Research of Next-Gen Chips, Process Technologies. IBM to Fund Development of 7nm and Below Process Technologies, Help to Create Post-Silicon Future

5:58 am | Intel Postpones Launch of High-End “Broadwell-K” Processors to July – September, 2015. High-End Core i “Broadwell” Processors Scheduled to Arrive in Q3 2015

5:50 am | Intel Delays Introduction of Core M “Broadwell” Processors Further. Low-Power Broadwell Chips Due in Late 2014