News
 

Bookmark and Share

(1) 

Rambus Inc., a developer of interconnection and memory technologies, said Wednesday that Qimonda, a leading producer of dynamic random access memory (DRAM), had signed a technology license agreement under which the latter would produce XDR memory for game consoles and computing applications.

“The XDR memory solution completes our broad graphics RAM portfolio to better serve high-performance and high-bandwidth applications for the fast growing global computing and consumer electronics markets,” said Robert Feurle, vice president and general manager of graphics DRAM at Qimonda.

The statement by the two companies states that “Rambus XDR solution will be implemented in Qimonda’s 75nm process technology” for integration into high-volume applications, including “game consoles, digital televisions, set-top boxes and PC graphics”. Specifications of Qimonda’s XDR devices are unclear. Typically, XDR offers densities ranging from 256Mb to 8Gb, and device widths ranging from x1 to x32, XDR DRAM. Clock-speeds of XDR may be as high as 3.20GHz.

It is unclear whether Qimonda has already signed a contract with a developer of graphics chips to supply XDR memory chips for certain products. This is not the first time, however, when Rambus officials or sources close to the company imply that computer graphics is a target for XDR and XDR2 memory technologies. Rambus has even developed a memory controller that supports GDDR1, GDDR2, GDDR3 and XDR memory technologies in a bid to attract developers of graphics chips.

Nevertheless, two years after initial graphics-related claims were made, there are no PC graphics products to use Rambus XDR-series DRAMs and the most widespread consumer device to use the XDR is Sony’s PlayStation 3, which is in a rather tight supply.

Currently commercially available GDDR3/GDDR4 memory chips which are used for high-end graphics cards nowadays may be clocked at up to 2.20GHz, providing bandwidth of 70.4GB/s, 105.6GB/s or 140.8GB/s for applications with 256-bit, 384-bit or 512-but memory bus widths respectively. Theoretically, when implemented in 512-bit mode, XDR could provide peak memory bandwidth of 204.8GB/s, however, given the complexity and pricing of XDR implementation could limit maximum bus width to 256-bit and reduce bandwidth to 102.4GB/s, which is not actually much faster than even 384-bit implementation of high-end GDDR3/GDDR4.

Discussion

Comments currently: 1
Discussion started: 01/05/07 09:06:11 AM
Latest comment: 01/05/07 09:06:11 AM

Add your Comment




Related news

Latest News

Thursday, August 21, 2014

12:10 pm | AMD to Lower Prices of A-Series APUs for Back-to-School Season. New Prices of AMD A-Series APUs Revealed

Wednesday, August 20, 2014

10:53 am | AMD to Cut Prices on FX-9000, Other FX Processors: New Prices Revealed. AMD to Make FX Chips More Affordable, Discontinue Low-End Models

10:32 am | LG to Introduce World’s First Curved 21:9 Ultra-Wide Display. LG Brings Curved Displays to Gamers, Professionals

9:59 am | AMD Readies FX-8370, FX-8370E Microprocessors. AMD Preps Two New “Mainstream” FX Chips

Monday, August 4, 2014

4:04 pm | HGST Shows-Off World’s Fastest SSD Based on PCM Memory. Phase-Change Memory Power’s World’s Fastest Solid-State Drive