Bookmark and Share


Rambus Inc., a developer of interconnection and memory technologies, said Wednesday that Qimonda, a leading producer of dynamic random access memory (DRAM), had signed a technology license agreement under which the latter would produce XDR memory for game consoles and computing applications.

“The XDR memory solution completes our broad graphics RAM portfolio to better serve high-performance and high-bandwidth applications for the fast growing global computing and consumer electronics markets,” said Robert Feurle, vice president and general manager of graphics DRAM at Qimonda.

The statement by the two companies states that “Rambus XDR solution will be implemented in Qimonda’s 75nm process technology” for integration into high-volume applications, including “game consoles, digital televisions, set-top boxes and PC graphics”. Specifications of Qimonda’s XDR devices are unclear. Typically, XDR offers densities ranging from 256Mb to 8Gb, and device widths ranging from x1 to x32, XDR DRAM. Clock-speeds of XDR may be as high as 3.20GHz.

It is unclear whether Qimonda has already signed a contract with a developer of graphics chips to supply XDR memory chips for certain products. This is not the first time, however, when Rambus officials or sources close to the company imply that computer graphics is a target for XDR and XDR2 memory technologies. Rambus has even developed a memory controller that supports GDDR1, GDDR2, GDDR3 and XDR memory technologies in a bid to attract developers of graphics chips.

Nevertheless, two years after initial graphics-related claims were made, there are no PC graphics products to use Rambus XDR-series DRAMs and the most widespread consumer device to use the XDR is Sony’s PlayStation 3, which is in a rather tight supply.

Currently commercially available GDDR3/GDDR4 memory chips which are used for high-end graphics cards nowadays may be clocked at up to 2.20GHz, providing bandwidth of 70.4GB/s, 105.6GB/s or 140.8GB/s for applications with 256-bit, 384-bit or 512-but memory bus widths respectively. Theoretically, when implemented in 512-bit mode, XDR could provide peak memory bandwidth of 204.8GB/s, however, given the complexity and pricing of XDR implementation could limit maximum bus width to 256-bit and reduce bandwidth to 102.4GB/s, which is not actually much faster than even 384-bit implementation of high-end GDDR3/GDDR4.


Comments currently: 1
Discussion started: 01/05/07 09:06:11 AM
Latest comment: 01/05/07 09:06:11 AM

Add your Comment

Related news

Latest News

Monday, July 28, 2014

6:02 pm | Microsoft’s Mobile Strategy Seem to Fail: Sales of Lumia and Surface Remain Low. Microsoft Still Cannot Make Windows a Popular Mobile Platform

12:11 pm | Intel Core i7-5960X “Haswell-E” De-Lidded: Twelve Cores and Alloy-Based Thermal Interface. Intel Core i7-5960X Uses “Haswell-EP” Die, Promises Good Overclocking Potential

Tuesday, July 22, 2014

10:40 pm | ARM Preps Second-Generation “Artemis” and “Maya” 64-Bit ARMv8-A Offerings. ARM Readies 64-Bit Cores for Non-Traditional Applications

7:38 pm | AMD Vows to Introduce 20nm Products Next Year. AMD’s 20nm APUs, GPUs and Embedded Chips to Arrive in 2015

4:08 am | Microsoft to Unify All Windows Operating Systems for Client PCs. One Windows OS will Power PCs, Tablets and Smartphones