Bookmark and Share


Though they be but little, they are fierce. The most powerful batteries on the planet are only a few millimeters in size, yet they pack such a punch that a driver could use a cellphone powered by these batteries to jump-start a dead car battery – and then recharge the phone in the blink of an eye.

“This is a whole new way to think about batteries. A battery can deliver far more power than anybody ever thought. In recent decades, electronics have gotten small. The thinking parts of computers have gotten small. And the battery has lagged far behind. This is a microtechnology that could change all of that. Now the power source is as high-performance as the rest of it,” said William P. King, bliss professor of mechanical science and engineering

Developed by researchers at the University of Illinois at Urbana-Champaign, the new microbatteries out-power even the best supercapacitors and could drive new applications in radio communications and compact electronics.

With currently available power sources, users have had to choose between power and energy. For applications that need a lot of power, like broadcasting a radio signal over a long distance, capacitors can release energy very quickly but can only store a small amount. For applications that need a lot of energy, like playing a radio for a long time, fuel cells and batteries can hold a lot of energy but release it or recharge slowly.

The new microbatteries offer both power and energy, and by tweaking the structure a bit, the researchers can tune them over a wide range on the power-versus-energy scale.

The batteries owe their high performance to their internal three-dimensional microstructure. Batteries have two key components: the anode (minus side) and cathode (plus side). Building on a novel fast-charging cathode design by materials science and engineering professor Paul Braun’s group, King and Pikul developed a matching anode and then developed a new way to integrate the two components at the microscale to make a complete battery with superior performance.

The graphic illustrates a high power battery technology from the University of Illinois.  Ions flow between three-dimensional micro-electrodes in a lithium ion battery.

With so much power, the batteries could enable sensors or radio signals that broadcast 30 times farther, or devices 30 times smaller. The batteries are rechargeable and can charge 1000 times faster than competing technologies – imagine juicing up a credit-card-thin phone in less than a second. In addition to consumer electronics, medical devices, lasers, sensors and other applications could see leaps forward in technology with such power sources available.

“Any kind of electronic device is limited by the size of the battery – until now. Consider personal medical devices and implants, where the battery is an enormous brick, and it’s connected to itty-bitty electronics and tiny wires. Now the battery is also tiny,” explained Mr. King.

Now, the researchers are working on integrating their batteries with other electronics components, as well as manufacturability at low cost.

“Now we can think outside of the box. It’s a new enabling technology. It’s not a progressive improvement over previous technologies; it breaks the normal paradigms of energy sources. It’s allowing us to do different, new things,” said Mr. Pikul.


Comments currently: 8
Discussion started: 04/18/13 07:26:01 PM
Latest comment: 04/26/13 07:00:43 PM
Expand all threads | Collapse all threads


This tech looks like it has potential but it's a long ways from being a viable product at a price consumers can afford. Maybe one day?
1 1 [Posted by: beenthere  | Date: 04/18/13 07:26:01 PM]

Will it burn people house?
1 1 [Posted by: Tukee44  | Date: 04/18/13 07:46:29 PM]
- collapse thread

What would happen if my hamster ate one... and what if my dog eats the hamster afterwards???
1 0 [Posted by: MHudon  | Date: 04/19/13 10:36:03 AM]
Best comment ever, of all time.
0 0 [Posted by: Shane Loudon  | Date: 04/26/13 07:00:43 PM]

Super cool! Hope it will make it to the market soon. However, with power comes the responsibility; I can't imagine what kind of dangerous weapons this can power...
0 1 [Posted by: gamoniac  | Date: 04/18/13 08:28:21 PM]
- collapse thread

Ironman dude, it's got to be Ironman!
0 0 [Posted by: MHudon  | Date: 04/19/13 10:37:00 AM]

how does this tech compare to lets say graphene super capacitors (the ones made whit a normal dvd drive)(in power density and power output). doesn't this micro structure cost a lot to produce.
0 1 [Posted by: massau  | Date: 04/19/13 01:16:38 AM]

It does cost a lot! But we're getting closer to the moment where the benefits will justify the development/production costs.
0 0 [Posted by: MHudon  | Date: 04/19/13 10:41:03 AM]


Add your Comment

Latest News

Wednesday, November 5, 2014

10:48 pm | LG’s Unique Ultra-Wide Curved 34” Display Finally Hits the Market. LG 34UC97 Available in the U.S. and the U.K.

Wednesday, October 8, 2014

12:52 pm | Lisa Su Appointed as New CEO of Advanced Micro Devices. Rory Read Steps Down, Lisa Su Becomes New CEO of AMD

Thursday, August 28, 2014

4:22 am | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

1:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

10:41 am | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture