Bookmark and Share


International Business Machines Friday unveiled its new “chip morphing technology” that would, as the company said, enable a new class of semiconductor products that can monitor and adjust their functions to improve their quality, performance and power consumption without human intervention.

The patented technology, called “eFUSE”, combines unique software algorithms and microscopic electrical fuses to produce chips that can regulate and adapt their own actions in response to changing conditions and system demands. By dynamically sensing that a chip needs a “tune-up”, eFUSE can alter the configuration and efficiency of circuitry to enhance performance or avoid a potential problem. This autonomic capability is expected to change the way chips are designed, manufactured and integrated into computers, cell phones, consumer electronics and other products.

“eFUSE reroutes chip logic, much the way highway traffic patterns can be altered by opening and closing new lanes,” said Dr. Bernard Meyerson, IBM Fellow, vice president and chief technologist, IBM Systems and Technology Group.

eFUSE is part of a built-in self-repair system that constantly monitors a chip’s functionality. If an imperfection is detected, this innovative technology “instinctively” initiates corrective actions by tripping inexpensive, simple electrical fuses that are designed into the chip at no additional cost. The activated fuses help the chip control individual circuit speed to manage power consumption and repair unexpected, and potentially costly flaws. If the technology detects that the chip is malfunctioning because individual circuits are running too fast or too slow, it can “throttle down” these circuits or speed them up by controlling the appropriate local voltage.

“Our work with innovative technologies like eFUSE is a result of IBM's commitment to investing in fundamental research and development, as well as to creating an environment that values and stimulates innovation,” Mr. Meyerson added.

The morphing technology also will optimize and tailor the performance and capabilities of a chip to meet an individual customer’s product needs in response to changing end-user or software demand. Customers further benefit from the versatility of eFUSE as the morphing can be repeated several times – even after the chip has been packaged and shipped in a product.

Invented and refined by IBM scientists and engineers, eFUSE achieves a goal pursued by chip designers for many years by putting to positive use the phenomena of “electromigration”, the company said.

This phenomena has traditionally been detrimental to chip performance and was avoided — even at significant cost and effort. IBM has perfected a technique that harnesses electromigration and uses it to program a fuse without damaging other parts of the chip. Previous implementations of on-chip fuse technology in the industry often involved rupturing fuses, which had resulted in unwanted performance and reliability problems.

Both versatile and adaptable, eFUSE is being implemented to support a variety of applications, such as high-performance microprocessors based on IBM's Power Architecture, including Power5 and other chips used in IBM eServer systems, as well as low-power IBM silicon germanium (SiGe) chips. eFUSE-enabled chips also are available to IBM foundry customers.

IBM also is leveraging the self-managing function of eFUSE in all 90nm custom chips, including those designed with IBM’s advanced embedded DRAM technology.

eFUSE is technology independent, does not require introduction of new materials, tools or processes, and is in production today at IBM’s 300mm facility in East Fiskhill, New York and 200mm plant in Burlington, Virginia.


Comments currently: 0

Add your Comment

Related news

Latest News

Wednesday, November 5, 2014

10:48 pm | LG’s Unique Ultra-Wide Curved 34” Display Finally Hits the Market. LG 34UC97 Available in the U.S. and the U.K.

Wednesday, October 8, 2014

12:52 pm | Lisa Su Appointed as New CEO of Advanced Micro Devices. Rory Read Steps Down, Lisa Su Becomes New CEO of AMD

Thursday, August 28, 2014

4:22 am | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

1:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

10:41 am | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture