News
 

Bookmark and Share

(0) 

Engineers from Massachusetts Institute of Technology (MIT) have created a kind of beltway that allows for the rapid transit of electrical energy through a well-known battery material, an advance that could usher in smaller, lighter batteries – for cell phones and other devices – that could recharge in seconds rather than hours.

State-of-the-art lithium rechargeable batteries have very high energy densities – they are good at storing large amounts of charge. The tradeoff is that they have relatively slow power rates – they are sluggish at gaining and discharging that energy. Consider current batteries for electric cars.

“They have a lot of energy, so you can drive at 55 mph for a long time, but the power is low. You can't accelerate quickly,” said Gerbrand Ceder, the Richard P. Simmons Professor of Materials Science and Engineering.

Traditionally, scientists have thought that the lithium ions responsible, along with electrons, for carrying charge across the battery simply move too slowly through the material.

About five years ago, however, Mr. Ceder and colleagues made a surprising discovery. Computer calculations of a well-known battery material, lithium iron phosphate, predicted that the material's lithium ions should actually be moving extremely quickly. Further calculations showed that lithium ions can indeed move very quickly into the material but only through tunnels accessed from the surface. If a lithium ion at the surface is directly in front of a tunnel entrance, there's no problem: it proceeds efficiently into the tunnel. But if the ion isn't directly in front, it is prevented from reaching the tunnel entrance because it cannot move to access that entrance.

Gerbrand Ceder and Byoungwoo Kang, a graduate student in materials science and engineering, devised a way around the problem by creating a new surface structure that does allow the lithium ions to move quickly around the outside of the material, much like a beltway around a city. When an ion traveling along this beltway reaches a tunnel, it is instantly diverted into it.

Using their new processing technique, the two went on to make a small battery that could be fully charged or discharged in 10 to 20 seconds (it takes six minutes to fully charge or discharge a cell made from the unprocessed material). Mr. Ceder notes that further tests showed that unlike other battery materials, the new material does not degrade as much when repeatedly charged and recharged. This could lead to smaller, lighter batteries, because less material is needed for the same result.

Because the material involved is not new – the researchers have simply changed the way they make it – Mr.Ceder believes the work could make it into the marketplace within two to three years.

Tags: Battery

Discussion

Comments currently: 0

Add your Comment




Related news

Latest News

Wednesday, October 8, 2014

8:52 pm | Lisa Su Appointed as New CEO of Advanced Micro Devices. Rory Read Steps Down, Lisa Su Becomes New CEO of AMD

Thursday, August 28, 2014

12:22 pm | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

9:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

6:41 pm | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture

Monday, August 25, 2014

6:05 pm | Chinese Inspur to Sell Mission-Critical Servers with AMD Software, Power 8 Processors. IBM to Enter Chinese Big Data Market with the Help from Inspur