News
 

Bookmark and Share

(0) 

Globalfoundries has announced the availability of a new silicon-validated solution to help customers accelerate time-to-volume for complex system-on-chip (SoC) designs at 28nm and beyond. Called DRC+, the technique goes beyond standard design rule checking (DRC) and uses two-dimensional shape-based pattern-matching to enable a 100-fold speed improvement in identifying complex manufacturing issues without sacrificing accuracy.

Until now, a designer has only had two primary options for identifying DFM issues during the SoC design cycle: run accurate but computationally intensive simulations based on numerical algorithms, or rely on metrology measurements directly from the fab. Attempts have been made to improve upon standard DRC with additional rules, but these approaches have had mixed success. For example, some have proposed the use of restrictive design rules that only allow highly regular structures for layout, avoiding problematic two-dimensional geometries altogether. The potential drawback is that designers cannot effectively optimize their circuits to meet application requirements with overly constrained design rules.

DRC+ takes a different approach. Instead of restricting the flexibility of designers, the technique augments standard DRC by applying rapid two-dimensional shape-based pattern matching to identify problematic configurations that could be difficult to manufacture. The tool then returns specific feedback to designers on how to resolve these issues.

As a critical component of DRC+, Globalfoundries is now offering customers the industry's first silicon-validated libraries of yield-critical patterns for technologies at 28nm and below. In tests run at Globalfoundries, DRC+ identified known problem patterns at speeds comparable to traditional DRC verification engines-leading to a 100-fold improvement in the speed of hotspot detection, without sacrificing accuracy.

DRC+ augments and completes the overall DFM solution provided by Globalfoundries, together with rule-based DFM verification and model-based litho/etch and CMP simulators, which can identify new yield-detracting patterns, as process conditions and design styles change over time, during technology development. As the process matures, DRC+ pattern-matching-based verification at the full-chip level can then be used to achieve increasing performance improvements, at the highest level of accuracy. By improving verification speed, DRC+ can have a direct impact on the ability to rapidly ramp a product to volume and accelerate time-to-market for customers.

The innovative DRC+ verification flow has been successfully used on several 32nm production IC designs and libraries of yield-detractors patterns for 28nm technology nodes are currently available from Globalfoundries for leading-edge foundry customers.

Tags: Globalfoundries, Semiconductor, 28nm, AMD

Discussion

Comments currently: 0

Add your Comment




Related news

Latest News

Thursday, August 28, 2014

12:22 pm | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

9:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

6:41 pm | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture

Monday, August 25, 2014

6:05 pm | Chinese Inspur to Sell Mission-Critical Servers with AMD Software, Power 8 Processors. IBM to Enter Chinese Big Data Market with the Help from Inspur

Sunday, August 24, 2014

6:12 pm | Former X-Bit Labs Editor Aims to Wed Tabletop Games with Mobile Platforms. Game Master Wants to Become a New World of Warcraft