Bookmark and Share


Physicists at the University of California, Riverside have taken an important step forward in developing a “spin computer” by successfully achieving “tunneling spin injection” into graphene.

An electron can be polarized to have a directional orientation, called “spin.” This spin comes in two forms – electrons are said to be either “spin up” or “spin down” – and allows for more data storage than is possible with current electronics.

Spin computers, when developed, would utilize the electron’s spin state to store and process vast amounts of information while using less energy, generating less heat and performing much faster than conventional computers in use today.

Tunneling spin injection is a term used to describe conductivity through an insulator. Graphene, brought into the limelight by this year’s Nobel Prize in physics, is a single-atom-thick sheet of carbon atoms arrayed in a honeycomb pattern. Extremely strong and flexible, it is a good conductor of electricity and capable of resisting heat.

“Graphene has among the best spin transport characteristics of any material at room temperature, which makes it a promising candidate for use in spin computers. But electrical spin injection from a ferromagnetic electrode into graphene is inefficient. An even greater concern is that the observed spin lifetimes are thousands of times shorter than expected theoretically. We would like longer spin lifetimes because the longer the lifetime, the more computational operations you can do," explained Roland Kawakami, an associate professor of physics and astronomy, who led the research team.

To address these problems, in the lab Kawakami and colleagues inserted a nanometer-thick insulating layer, known as a “tunnel barrier,” in between the ferromagnetic electrode and the graphene layer. They found that the spin injection efficiency increased dramatically.

“We found a 30-fold increase in the efficiency of how spins were being injected by quantum tunneling across the insulator and into graphene. Equally interesting is that the insulator was operating like a one-way valve, allowing electron flow in one direction – from the electrode to graphene – but not the other. The insulator helps to keep the injected spin inside the graphene, which is what leads to high spin injection efficiency. This counterintuitive result is the first demonstration of tunneling spin injection into graphene. We now have world record values for spin injection efficiency into graphene," said Mr. Kawakami.

In their experiments, the Kawakami lab also made an unexpected discovery that explains short spin lifetimes of electrons in graphene that have been reported by other experimental researchers.

Kawakami explained that spin lifetimes are typically investigated through an experiment, known as a Hanle measurement, which uses a ferromagnetic spin detector to monitor the electron spins in graphene as they change direction in an external magnetic field. When his team placed a tunnel barrier in between the ferromagnetic spin detector and the graphene, the spin lifetime from the Hanle measurement jumped up to about 500 picoseconds (compared to typical values of 100 picoseconds) even though the researchers did nothing different to the graphene itself.

Kawakami explained that, theoretically, graphene has the potential for extremely long spin lifetimes.

“This lifetime could be microseconds long. A long lifetime is a special property of graphene, making it a very attractive material for a spin computer," said Mr. Kawakami.

Growing insulating barriers on graphene is neither a simple nor easy process. The insulator tends to form clumps on the graphene sheet, due in part to graphene’s reluctance to form strong bonds with materials. To circumvent the problem of clumping, in their experiments the Kawakami team layered the graphene sheet with titanium (about half an atom thick) using a method called molecular beam epitaxy. The titanium layer, the researchers found, prevented the insulator from clumping on graphene or sliding off it.

Tags: Graphene


Comments currently: 6
Discussion started: 10/18/10 01:26:56 AM
Latest comment: 10/18/10 12:15:27 PM
Expand all threads | Collapse all threads


How is it possible to lay a layer thinner than one atom?
0 0 [Posted by: Cristian Mataoanu  | Date: 10/18/10 01:26:56 AM]
- collapse thread

Don't try it at home...
0 0 [Posted by: KonradK  | Date: 10/18/10 04:19:15 AM]
I guess if you use particles smaller than atoms (electroncs, quarks). Simplest atom would be hydrogen-1 which consists of a proton. Graphene consists of carbon molecules, thus is much thicker than that. Now what is really happening ... beats me too.
0 0 [Posted by:  | Date: 10/18/10 08:45:07 AM]
I'd hazard a guess that's a misquote/typo and it should read micron not atom.

My science knowledge isn't the best but I'm pretty sure you can't deposit a layer of any element that is thinner than an atom. To do that you would need to, well, split the atom!
0 0 [Posted by: VaguelyAmused  | Date: 10/18/10 11:35:40 AM]
they might be overlapping the graphene layer with the titanium layer, basically sitting the titanium atoms withing the carbon rings.

This article is identical to ones all over the web word for word and the "less then an atom thickness" is on all of them. Some include a picture which actually shows a layer about as thin as the 1 atom thick graphene as the insulator so i believe this is not a typo. Also consider that titanium atoms take up much larger volume then carbon atoms, because of more electrons. So really the size of the insulator layer is really 1/2 of a titanium atom thickness, assuming the picture is to scale.
0 0 [Posted by: cashkennedy  | Date: 10/18/10 11:53:44 AM]
I went on a hunt and found the same, all saying the "about half an atom thick" so I'm second guessing myself and thinking maybe I'm wrong.

However I don't think the picture shows the titanium layer at all. The article seems to suggest that the titanium layer is deposited between the graphene and insulator - the picture shows only the insulator. Though your point still stands, if its to scale, and that insulator is 1nM, then the titanium layer at 1/2micron would be 500nM which seems completely off the scale.

I'll retract my comment and at present sit in awe at what can seemingly be done in the world of science nowadays :-)
0 0 [Posted by: VaguelyAmused  | Date: 10/18/10 12:15:27 PM]


Add your Comment

Related news

Latest News

Wednesday, November 5, 2014

10:48 pm | LG’s Unique Ultra-Wide Curved 34” Display Finally Hits the Market. LG 34UC97 Available in the U.S. and the U.K.

Wednesday, October 8, 2014

12:52 pm | Lisa Su Appointed as New CEO of Advanced Micro Devices. Rory Read Steps Down, Lisa Su Becomes New CEO of AMD

Thursday, August 28, 2014

4:22 am | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

1:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

10:41 am | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture