News
 

Bookmark and Share

(0) 

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Modern computer chips heat significantly as a result of the electrons in the current colliding with the device material. Future computer chips made out of graphene – carbon sheets 1 atom thick – could be faster than silicon chips and operate at lower power. However, a thorough understanding of heat generation and distribution in graphene devices has eluded researchers because of the tiny dimensions involved.

The speed and size of computer chips are limited by how much heat they dissipate. All electronics dissipate heat, a phenomenon called resistive heating. This heating outweighs other smaller thermoelectric effects that can locally cool a device. Computers with silicon chips use fans or flowing water to cool the transistors, a process that consumes much of the energy required to power a device.

The University of Illinois team used an atomic force microscope tip as a temperature probe to make the first nanometer-scale temperature measurements of a working graphene transistor. The measurements revealed surprising temperature phenomena at the points where the graphene transistor touches the metal connections. They found that thermoelectric cooling effects can be stronger at graphene contacts than resistive heating, actually lowering the temperature of the transistor.


An atomic force microscope tip scans the surface of a graphene-metal contact to measure temperature with spatial resolution of about 10 nm and temperature resolution of about 250 mK. Color represents temperature data. | Image by Alex Jerez at Beckman Institute Imaging Technology Group

“In silicon and most materials, the electronic heating is much larger than the self-cooling. However, we found that in these graphene transistors, there are regions where the thermoelectric cooling can be larger than the resistive heating, which allows these devices to cool themselves. This self-cooling has not previously been seen for graphene devices," said William King, mechanical science and engineering professor.

This self-cooling effect means that graphene-based electronics could require little or no cooling, begetting an even greater energy efficiency and increasing graphene’s attractiveness as a silicon replacement.

“Graphene electronics are still in their infancy; however, our measurements and simulations project that thermoelectric effects will become enhanced as graphene transistor technology and contacts improve,” said Eric Pop, an electrical and computer engineering professor at the Illinois university.

Next, the researchers plan to use the AFM temperature probe to study heating and cooling in carbon nanotubes and other nanomaterials.

Tags: Semiconductor

Discussion

Comments currently: 0

Add your Comment




Related news

Latest News

Tuesday, July 15, 2014

6:11 am | Apple Teams Up with IBM to Make iPhone and iPad Ultimate Tools for Businesses and Enterprises. IBM to Sell Business-Optimized iPhone and iPad Devices

Monday, July 14, 2014

6:01 am | IBM to Invest $3 Billion In Research of Next-Gen Chips, Process Technologies. IBM to Fund Development of 7nm and Below Process Technologies, Help to Create Post-Silicon Future

5:58 am | Intel Postpones Launch of High-End “Broadwell-K” Processors to July – September, 2015. High-End Core i “Broadwell” Processors Scheduled to Arrive in Q3 2015

5:50 am | Intel Delays Introduction of Core M “Broadwell” Processors Further. Low-Power Broadwell Chips Due in Late 2014

Wednesday, July 9, 2014

4:04 pm | Intel Readies New Quark “Dublin Bay” Microprocessors. Intel’s “Dublin Bay” Chips Due in 2015