News
 

Bookmark and Share

(0) 

IBM scientists have unveiled a prototype optical chipset, dubbed “Holey Optochip”, that is the first parallel optical transceiver to transfer one trillion bits – 1Tb (125GB/s) – of information per second.

At 1Tb/s, IBM’s latest advance in optical chip technology provides unprecedented amounts of bandwidth that could one day ship loads of data such as posts to social media sites, digital pictures and videos posted online, sensors used to gather climate information, and transaction records of online purchases.

Optical networking offers the potential to significantly improve data transfer rates by speeding the flow of data using light pulses, instead of sending electrons over wires. Because of this, researchers have been looking for ways to make use of optical signals within standard low-cost, high-volume chip manufacturing techniques for widespread use.

1Tb/s Sets Milestone

“Reaching the one trillion bit per second mark with the Holey Optochip marks IBM’s latest milestone to develop chip-scale transceivers that can handle the volume of traffic in the era of big data. We have been actively pursuing higher levels of integration, power efficiency and performance for all the optical components through packaging and circuit innovations. We aim to improve on the technology for commercialization in the next decade with the collaboration of manufacturing partners,” said Clint Schow, IBM Researcher, part of the team that built the prototype. 

Using a novel approach, scientists in IBM labs developed the Holey Optochip by fabricating 48 holes through a standard silicon CMOS chip. The holes allow optical access through the back of the chip to 24 receiver and 24 transmitter channels to produce an ultra-compact, high-performing and power-efficient optical module capable of record setting data transfer rates. The Holey Optochip module is constructed with components that are commercially available today, providing the possibility to manufacture at economies of scale.


Photomicrograph of IBM Holey Optochip. Original chip dimensions are 5.2mm*5.8mm.

Consistent with green computing initiatives, the Holey Optochip achieves record speed at a power efficiency (the amount of power required to transmit a bit of information) that is among the best ever reported. The transceiver consumes less than 5W. This progress in power efficient interconnects is necessary to allow companies who adopt high-performance computing to manage their energy load while performing powerful applications such as analytics, data modeling and forecasting.

By demonstrating unparalleled levels of performance, the Holey Optochip illustrates that high-speed, low-power interconnects are feasible in the near term and optical is the only transmission medium that can stay ahead of the accelerating global demand for broadband. The future of computing will rely heavily on optical chip technology to facilitate the growth of big data and cloud computing and the drive for next-generation data center applications.

Technical Aspects of the Holey Optochip


Photomicrograph of the back of the IBM Holey Optochip with lasers and photodectors visible through substrate holes. 

Parallel optics is a fiber optic technology primarily targeted for high-data, short-reach multimode fiber systems that are typically less than 150 meters. Parallel optics differs from traditional duplex fiber optic serial communication in that data is simultaneously transmitted and received over multiple optical fibers.

A single 90nm IBM CMOS transceiver IC with 24 receiver and 24 transmitter circuits becomes a Holey Optochip with the fabrication of forty-eight through-silicon holes, or “optical vias” – one for each transmitter and receiver channel. Simple post-processing on completed CMOS wafers with all devices and standard wiring levels results in an entire wafer populated with Holey Optochips. The transceiver chip measures only 5.2mm*5.8 mm. Twenty-four channel, industry-standard 850nm VCSEL (vertical cavity surface emitting laser) and photodiode arrays are directly flip-chip soldered to the Optochip. This direct packaging produces high-performance, chip-scale optical engines. The Holey Optochips are designed for direct coupling to a standard 48-channel multimode fiber array through an efficient microlens optical system that can be assembled with conventional high-volume packaging tools.

Tags: IBM, Holey

Discussion

Comments currently: 0

Add your Comment




Latest News

Thursday, August 28, 2014

12:22 pm | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

9:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

6:41 pm | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture

Monday, August 25, 2014

6:05 pm | Chinese Inspur to Sell Mission-Critical Servers with AMD Software, Power 8 Processors. IBM to Enter Chinese Big Data Market with the Help from Inspur

Sunday, August 24, 2014

6:12 pm | Former X-Bit Labs Editor Aims to Wed Tabletop Games with Mobile Platforms. Game Master Wants to Become a New World of Warcraft