News
 

Bookmark and Share

(3) 

For decades, electronic devices have been getting smaller, and smaller. It is now possible to place billions of transistors on a single silicon chip. But transistors based on semiconductors can continue getting smaller only to a certain degree, it is generally believed. Great minds of the planet think how they can further shrink the transistor with a semiconductor, but some other look in a completely different direction.

“At the rate the current technology is progressing, in 10 or 20 years, they will not be able to get any smaller. Also, semiconductors have another disadvantage: they waste a lot of energy in the form of heat,” said Yoke Khin Yap, a physicist of Michigan Technological University.

Experiments Lead to Discovery

Scientists have experimented with different materials and designs for transistors to address these issues, always using semiconductors like silicon. Back in 2007, Mr. Yap wanted to try something different that might open the door to a new age of electronics.

“The idea was to make a transistor using a nanoscale insulator with nanoscale metals on top. In principle, you could get a piece of plastic and spread a handful of metal powders on top to make the devices, if you do it right. But we were trying to create it in nanoscale, so we chose a nanoscale insulator, boron nitride nanotubes, or BNNTs for the substrate,” said the physicist.

Mr. Yap’s team had figured out how to make virtual carpets of BNNTs,which happen to be insulators and thus highly resistant to electrical charge. Using lasers, the team then placed quantum dots (QDs) of gold as small as three nanometers across on the tops of the BNNTs, forming QDs-BNNTs. BNNTs are the perfect substrates for these quantum dots due to their small, controllable, and uniform diameters, as well as their insulating nature. BNNTs confine the size of the dots that can be deposited.


Electrons flash across a series of gold quantum dots on boron nitride nanotubes. Michigan Tech scientists made the quantum-tunneling device, which acts like a transistor at room temperature, without using semiconducting materials. Image by Yoke Khin Yap.

In collaboration with scientists at Oak Ridge National Laboratory (ORNL), they fired up electrodes on both ends of the QDs-BNNTs at room temperature, and something interesting happened. Electrons jumped very precisely from gold dot to gold dot, a phenomenon known as quantum tunneling.

“Imagine that the nanotubes are a river, with an electrode on each bank. Now imagine some very tiny stepping stones across the river. The electrons hopped between the gold stepping stones. The stones are so small, you can only get one electron on the stone at a time. Every electron is passing the same way, so the device is always stable,” said the researcher.

Transistor Without a Semiconductor

The team had made a transistor without a semiconductor. When sufficient voltage was applied, it switched to a conducting state. When the voltage was low or turned off, it reverted to its natural state as an insulator.

Furthermore, there was no “leakage”: no electrons from the gold dots escaped into the insulating BNNTs, thus keeping the tunneling channel cool. In contrast, silicon is subject to leakage, which wastes energy in electronic devices and generates a lot of heat.

“Other people have made transistors that exploit quantum tunneling. However, those tunneling devices have only worked in conditions that would discourage the typical cellphone user. They only operate at liquid-helium temperatures,” said John Jaszczak, another physicist from Michigan Tech physicist, who has developed the theoretical framework for Mr. Yap’s experimental research.

The secret to Yap’s gold-and-nanotube device is its submicroscopic size: one micron long and about 20nm wide.

“The gold islands have to be on the order of nanometers across to control the electrons at room temperature. If they are too big, too many electrons can flow. In this case, smaller is truly better. Working with nanotubes and quantum dots gets you to the scale you want for electronic devices,” said Mr. Jaszczak

“Theoretically, these tunneling channels can be miniaturized into virtually zero dimension when the distance between electrodes is reduced to a small fraction of a micron,” said Mr. Yap.

Yoke Khin Yap has filed for a full international patent on the technology. 

Tags: Semiconductor

Discussion

Comments currently: 3
Discussion started: 06/28/13 10:07:15 PM
Latest comment: 06/30/13 10:36:28 AM

[1-3]

1. 
I read these research articles but sure I only retain about 1%
0 1 [Posted by: Zimanodenea  | Date: 06/28/13 10:07:15 PM]
Reply

2. 
Won't this make chips more expensive then? Seeing as how gold is more expensive than the copper and other metals they use in current chips.
0 1 [Posted by: dinosore  | Date: 06/29/13 03:38:18 AM]
Reply

3. 
If I understand correctly the bottom line: in the near future, chips as powerful as Haswell will be the size of the dot at the end of this phrase.
Is that right?
0 2 [Posted by: Gustavo du Mortier  | Date: 06/30/13 10:36:28 AM]
Reply

[1-3]

Add your Comment




Related news

Latest News

Monday, July 28, 2014

6:02 pm | Microsoft’s Mobile Strategy Seem to Fail: Sales of Lumia and Surface Remain Low. Microsoft Still Cannot Make Windows a Popular Mobile Platform

12:11 pm | Intel Core i7-5960X “Haswell-E” De-Lidded: Twelve Cores and Alloy-Based Thermal Interface. Intel Core i7-5960X Uses “Haswell-EP” Die, Promises Good Overclocking Potential

Tuesday, July 22, 2014

10:40 pm | ARM Preps Second-Generation “Artemis” and “Maya” 64-Bit ARMv8-A Offerings. ARM Readies 64-Bit Cores for Non-Traditional Applications

7:38 pm | AMD Vows to Introduce 20nm Products Next Year. AMD’s 20nm APUs, GPUs and Embedded Chips to Arrive in 2015

4:08 am | Microsoft to Unify All Windows Operating Systems for Client PCs. One Windows OS will Power PCs, Tablets and Smartphones