Bookmark and Share


Optical computing – using light rather than electricity to perform calculations – could pay dividends for both conventional computers and quantum computers, largely hypothetical devices that could perform some types of computations exponentially faster than classical computers. But there are challenges that need to be overcome before optical computing becomes reality.

Optical computing requires light particles – photons – to modify each other’s behavior, something they averse to do: two photons that collide in a vacuum simply pass through each other. In the latest issue of the journal Science, researchers at MIT’s Research Laboratory of Electronics, together with colleagues at Harvard University and the Vienna University of Technology, described the experimental realization of an optical switch that is controlled by a single photon, allowing light to govern the transmission of light. As such, it is the optical analog of a transistor, the fundamental component of a computing circuit.

Moreover, since the weird, counterintuitive effects of quantum physics are easier to see in individual particles than in clusters of particles, the ability to use a single photon to flip the switch could make it useful for quantum computing.

The heart of the switch is a pair of highly reflective mirrors. When the switch is on, an optical signal – a beam of light – can pass through both mirrors. When the switch is off, only about 20 percent of the light in the signal can get through. The paired mirrors constitute what’s known as an optical resonator.

“If you had just one mirror, all the light would come back. When you have two mirrors, something very strange happens,” explained Vladan Vuleti?, the Lester Wolfe Professor of Physics at MIT, who led the new work.

Light can be thought of as particles (photons), but it can also be thought of as a wave, an electromagnetic field. Even though, on the particle description, photons are stopped by the first mirror, on the wave description, the electromagnetic field laps into the space between the mirrors. If the distance between the mirrors is precisely calibrated to the wavelength of the light, the mirrors become transparent.

“Basically, a very large field builds up inside the cavity that cancels the field coming back and goes in the forward direction,” said Mr. Vuleti?.

Clouding Over

In the RLE researchers’ experiment, the cavity between the mirrors is filled with a gas of supercooled cesium atoms. Ordinarily, these atoms do not interfere with the light passing through the mirrors. But if a single “gate photon” is fired into their midst at a different angle, kicking just one electron of one atom into a higher energy state, it changes the physics of the cavity enough that light can no longer pass through it.

For conventional computers, the chief advantage of optical computing would be in power management: As computer chips have more and more transistors crammed onto them, they draw more power and run hotter. Computing with light instead of electricity would address both problems. Of course, clouds of supercooled atoms are not a practical design for the transistors in web servers.

“For the classical implementation, this is more of a proof-of-principle experiment showing how it could be done. One could imagine implementing a similar device in solid state – for example, using impurity atoms inside an optical fiber or piece of solid,” stated the scientist.

Going Quantum

Quantum-computing applications may be more compelling. Bizarrely, tiny particles of matter can be in mutually exclusive states simultaneously, something known as superposition. Where a bit in a classical computer can be either on or off, representing 0 or 1, bits built from particles in superposition can represent 0 and 1 at the same time. As a consequence, they could, in principle, evaluate many possible solutions to a computational problem in parallel, rather than considering them one by one.

Primitive quantum computers have been built using laser-trapped ions and nuclear magnetic resonance, but it’s hard to keep their bits – or “qubits,” for quantum bits – in superposition. Superposition is much easier to preserve in photons, for exactly the same reason that it’s hard to get photons to interact. The ability to switch an optical gate with a single photon opens the possibility of arrays of optical circuits, all of which are in superposition.

“If the gate photon is there, the light gets reflected; if the gate photon is not there, the light gets transmitted. So if you were to put in a superposition state of the photon being there and not being there, then you would end up with a macroscopic superposition state of the light being transmitted and reflected,” explained Mr. Vuleti?.

A photon-switched transistor has other implications for quantum computing. For instance, Vuleti? says, one of the first applications of a conventional transistor was to filter noise out of an electrical signal by feeding the transistor’s output back into it.

“Quantum feedback can cancel – to the extent allowed by quantum mechanics – quantum noise. You can make quantum states that you would not otherwise get,” stressed the researcher.

The switch could also be used as a photon detector: If a photon has struck the atoms, light will not pass through the cavity, which means there is a device that can detect a photon without destroying it, which does not exist today. But it would have many applications in quantum information processing.

Tags: Semiconductor


Comments currently: 2
Discussion started: 07/11/13 02:26:30 AM
Latest comment: 07/11/13 11:27:28 PM
Expand all threads | Collapse all threads


Now the plain English translation please.
0 0 [Posted by: TAViX  | Date: 07/11/13 02:26:30 AM]
- collapse thread

In simple terms it is a means to emulate what a pMOS transistor does. The gate Photon is emulating the gate actions of a pMOS's gate.

Transistor's main parts of concern in simplified terms: Source, drain and gate

In a pMOS when the gate is 'OFF' the channel between source to drain is able to conductor the majority carriers. The pMOS is said to be 'ON'

Similarly when the Gate of a pMOS is 'ON' the channel is stopped and the transistor is said to be 'OFF'

A nMOS works in the exact opposite way to the pMOS.

The researchers have attempted to replace the semiconductor based transistor itself with its optical equivalent.
0 0 [Posted by: vanakkuty  | Date: 07/11/13 11:27:28 PM]


Add your Comment

Related news

Latest News

Wednesday, November 5, 2014

10:48 pm | LG’s Unique Ultra-Wide Curved 34” Display Finally Hits the Market. LG 34UC97 Available in the U.S. and the U.K.

Wednesday, October 8, 2014

12:52 pm | Lisa Su Appointed as New CEO of Advanced Micro Devices. Rory Read Steps Down, Lisa Su Becomes New CEO of AMD

Thursday, August 28, 2014

4:22 am | AMD Has No Plans to Reconsider Recommended Prices of Radeon R9 Graphics Cards. AMD Will Not Lower Recommended Prices of Radeon R9 Graphics Solutions

Wednesday, August 27, 2014

1:09 pm | Samsung Begins to Produce 2.13GHz 64GB DDR4 Memory Modules. Samsung Uses TSV DRAMs for 64GB DDR4 RDIMMs

Tuesday, August 26, 2014

10:41 am | AMD Quietly Reveals Third Iteration of GCN Architecture with Tonga GPU. AMD Unleashes Radeon R9 285 Graphics Cards, Tonga GPU, GCN 1.2 Architecture