News
 

Bookmark and Share

(2) 

A single layer of tin atoms could be the world’s first material to conduct electricity with 100% efficiency at the temperatures that computer chips operate, according to a team of theoretical physicists led by researchers from the U.S. department of energy’s (DOE) SLAC national accelerator naboratory and Stanford University. Researchers call the new material “stanene”, combining the Latin name for tin (stannum) with the suffix used in graphene, another innovative single-layer material.

"Stanene could increase the speed and lower the power needs of future generations of computer chips, if our prediction is confirmed by experiments that are underway in several laboratories around the world," said the team leader, Shoucheng Zhang, a physics professor at Stanford and the Stanford Institute for Materials and Energy Sciences (SIMES), a joint institute with SLAC.

The Path to Stanene

For the past decade, Shoucheng Zhang and colleagues have been calculating and predicting the electronic properties of a special class of materials known as topological insulators, which conduct electricity only on their outside edges or surfaces and not through their interiors. When topological insulators are just one atom thick, their edges conduct electricity with 100% efficiency. These unusual properties result from complex interactions between the electrons and nuclei of heavy atoms in the materials.

“The magic of topological insulators is that by their very nature, they force electrons to move in defined lanes without any speed limit, like the German autobahn. As long as they’re on the freeway – the edges or surfaces – the electrons will travel without resistance,” said Mr. Zhang.

In 2006 and 2009, Mr. Zhang’s group predicted that mercury telluride and several combinations of bismuth, antimony, selenium and tellurium should be topological insulators, and they were soon proven right in experiments performed by others. But none of those materials is a perfect conductor of electricity at room temperature, limiting their potential for commercial applications.

 

Earlier this year, visiting scientist Yong Xu, who is now at Tsinghua University in Beijing, collaborated with Zhang’s group to consider the properties of a single layer of pure tin.

“We knew we should be looking at elements in the lower-right portion of the periodic table. All previous topological insulators have involved the heavy and electron-rich elements located there,” said Mr. Xu.

Adding fluorine atoms (yellow) to a single layer of tin atoms (grey) should allow a predicted new material, stanene, to conduct electricity perfectly along its edges (blue and red arrows) at temperatures up to 100°C (212°Fahrenheit).

Their calculations indicated that a single layer of tin would be a topological insulator at and above room temperature, and that adding fluorine atoms to the tin would extend its operating range to at least 100°C (212°Fahrenheit).

Ultimately a Substitute for Silicon?

Mr. Zhang said the first application for this stanene-fluorine combination could be in wiring that connects the many sections of a microprocessor, allowing electrons to flow as freely as cars on a highway. Traffic congestion would still occur at on- and off-ramps made of conventional conductors, he said. But stanene wiring should significantly reduce the power consumption and heat production of microprocessors.

Manufacturing challenges include ensuring that only a single layer of tin is deposited and keeping that single layer intact during high-temperature chip-making processes.

“Eventually, we can imagine stanene being used for many more circuit structures, including replacing silicon in the hearts of transistors. Someday we might even call this area Tin Valley rather than Silicon Valley,” said Mr. Zhang.

 

Tags: Semiconductor, Stanene

Discussion

Comments currently: 2
Discussion started: 11/28/13 09:15:48 AM
Latest comment: 04/22/14 07:26:15 AM

[1-2]

1. 
Tin? What's that??
Stannum is the right name for the material, however Stannum has a very low melting temperature, almost 5 times lower than Silicon. This needs to be addressed otherwise no viable semiconductors can be made out of it...
0 0 [Posted by: TAViX  | Date: 12/03/13 02:19:45 PM]
Reply

2. 
Tin is the english name of the chemical element, not Stannum, Stannum was the latin name (now not used) as it clearly say at the beggging of the article. Now, in this article, "Stanene" (see the typing differences) is the name that scientist gave to the frame of a single layer of Tin (with addition of Fluoridine atoms!). The melting point of Tin is about 232 ºC (450 ºF), meanwhile silicon melting point is 1414 ºC (about 6.09 times above Tin). Nevertheless the properties of nanoscale surface as Stanene can be very different from "bulk" (a bunch of the material), more taking account the addition of Fluoridine atoms. As evidence is this article where the conductivity is better than bulk.
0 0 [Posted by: Sergio Ferrari  | Date: 04/22/14 07:26:15 AM]
Reply

[1-2]

Add your Comment




Related news

Latest News

Tuesday, July 22, 2014

10:40 pm | ARM Preps Second-Generation “Artemis” and “Maya” 64-Bit ARMv8-A Offerings. ARM Readies 64-Bit Cores for Non-Traditional Applications

7:38 pm | AMD Vows to Introduce 20nm Products Next Year. AMD’s 20nm APUs, GPUs and Embedded Chips to Arrive in 2015

4:08 am | Microsoft to Unify All Windows Operating Systems for Client PCs. One Windows OS will Power PCs, Tablets and Smartphones

Monday, July 21, 2014

10:32 pm | PQI Debuts Flash Drive with Lightning and USB Connectors. PQI Offers Easy Way to Boost iPhone or iPad Storage

10:08 pm | Japan Display Begins to Mass Produce IPS-NEO Displays. JDI Begins to Mass Produce Rival for AMOLED Panels

12:56 pm | Microsoft to Fire 18,000 Employees to Boost Efficiency. Microsoft to Perform Massive Job Cut Ever Following Acquisition of Nokia