Articles: CPU

Bookmark and Share


Table of Contents

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]

 The two leading developers of x86 processors have recently released their new product generations: AMD Richland and Intel Haswell. We have already tested both series and our impressions aren’t really all positive. Obviously, increasing the conventional x86 computing performance is not the main priority anymore. The new CPU designs do not run everyday applications much faster than their predecessors. They have only improved in speed by a few percent. Instead, AMD and Intel have focused on lowering heat dissipation and producing CPUs with low TDP so that the classic x86 microarchitectures might be used in mobile devices of various form-factors. 

That’s not the only new way that AMD and Intel develop their CPU designs in, however. Both companies keep on improving their integrated graphics cores which by now have become to account for a third of the whole transistor budget of a modern CPU.

A few years ago it wouldn’t have had much practical sense to discuss integrated graphics cores in terms of relative performance, but today the situation is completely different. The graphics engines implemented in today's processors can serve as a full-featured replacement of entry-level discrete graphics cards. They have effectively eaten up quite a large share of the graphics hardware market as the consequence. However, the main purpose of integrating high-performance GPUs into the base processor design is not in competing with discrete graphics solutions. CPU/GPU hybrids are demanded by the mobile market in the first place. This reflects users' desire to have a rather compact, yet fast digital gadget. A single CPU+GPU chip with a relatively low level of heat dissipation is exactly what is necessary to develop modern mobile solutions.

The broad availability of desktop CPUs with integrated graphics cores is actually just a side effect of the unification of mobile and desktop CPU designs, but desktop users benefit from this trend, too. The heterogeneous computing concept has been getting more popular and such applications can make use of both computing and graphics cores in the same processor. Moving conventional CPU loads to the graphics core's pipeline can bring about substantial performance improvements across a number of algorithms, especially those that deal with multimedia data.

Compact desktop systems are on the rise, too. They don't need an external graphics card so that they could fit into a very small case or even into a monitor.

This can also save you some money, because if your computer is not expected to run modern 3D games, a CPU with integrated graphics will let you do without a discrete graphics card and you can spend your money for something else. So again, the integrated graphics core of a modern processor is not utterly useless for desktop users. That’s why we want to dedicate this review to checking out the latest versions of integrated graphics cores from AMD and Intel.

The desktop processors from AMD’s Richland and Intel’s Haswell generations have improved in terms of their 3D graphics performance compared to their predecessors. AMD's Devastator core now works at higher clock rates whereas Intel has increased the number of execution devices but still offers a cut-down version of the resulting graphics core in its desktop processors. Such substantial changes need to be tested in practice, so in this review we will benchmark and compare the integrated graphics cores of several inexpensive processors for desktop computers.

Pages: [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ]


Comments currently: 44
Discussion started: 09/15/13 10:28:42 PM
Latest comment: 06/29/16 04:01:31 PM

View comments

Add your Comment